Integration for Grassmann variables
In mathematical physics , the Berezin integral , named after Felix Berezin , (also known as Grassmann integral , after Hermann Grassmann ), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra ). It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions .
Let
Λ
n
{\displaystyle \Lambda ^{n}}
be the exterior algebra of polynomials in anticommuting elements
θ
1
,
…
,
θ
n
{\displaystyle \theta _{1},\dots ,\theta _{n}}
over the field of complex numbers. (The ordering of the generators
θ
1
,
…
,
θ
n
{\displaystyle \theta _{1},\dots ,\theta _{n}}
is fixed and defines the orientation of the exterior algebra.)
The Berezin integral over the sole Grassmann variable
θ
=
θ
1
{\displaystyle \theta =\theta _{1}}
is defined to be a linear functional
∫
[
a
f
(
θ
)
+
b
g
(
θ
)
]
d
θ
=
a
∫
f
(
θ
)
d
θ
+
b
∫
g
(
θ
)
d
θ
,
a
,
b
∈
C
{\displaystyle \int [af(\theta )+bg(\theta )]\,d\theta =a\int f(\theta )\,d\theta +b\int g(\theta )\,d\theta ,\quad a,b\in \mathbb {C} }
where we define
∫
θ
d
θ
=
1
,
∫
d
θ
=
0
{\displaystyle \int \theta \,d\theta =1,\qquad \int \,d\theta =0}
so that :
∫
∂
∂
θ
f
(
θ
)
d
θ
=
0.
{\displaystyle \int {\frac {\partial }{\partial \theta }}f(\theta )\,d\theta =0.}
These properties define the integral uniquely and imply
∫
(
a
θ
+
b
)
d
θ
=
a
,
a
,
b
∈
C
.
{\displaystyle \int (a\theta +b)\,d\theta =a,\quad a,b\in \mathbb {C} .}
Take note that
f
(
θ
)
=
a
θ
+
b
{\displaystyle f(\theta )=a\theta +b}
is the most general function of
θ
{\displaystyle \theta }
because Grassmann variables square to zero, so
f
(
θ
)
{\displaystyle f(\theta )}
cannot have non-zero terms beyond linear order.
The Berezin integral on
Λ
n
{\displaystyle \Lambda ^{n}}
is defined to be the unique linear functional
∫
Λ
n
⋅
d
θ
{\displaystyle \int _{\Lambda ^{n}}\cdot {\textrm {d}}\theta }
with the following properties:
∫
Λ
n
θ
n
⋯
θ
1
d
θ
=
1
,
{\displaystyle \int _{\Lambda ^{n}}\theta _{n}\cdots \theta _{1}\,\mathrm {d} \theta =1,}
∫
Λ
n
∂
f
∂
θ
i
d
θ
=
0
,
i
=
1
,
…
,
n
{\displaystyle \int _{\Lambda ^{n}}{\frac {\partial f}{\partial \theta _{i}}}\,\mathrm {d} \theta =0,\ i=1,\dots ,n}
for any
f
∈
Λ
n
,
{\displaystyle f\in \Lambda ^{n},}
where
∂
/
∂
θ
i
{\displaystyle \partial /\partial \theta _{i}}
means the left or the right partial derivative. These properties define the integral uniquely.
Notice that different conventions exist in the literature: Some authors define instead[ 1]
∫
Λ
n
θ
1
⋯
θ
n
d
θ
:=
1.
{\displaystyle \int _{\Lambda ^{n}}\theta _{1}\cdots \theta _{n}\,\mathrm {d} \theta :=1.}
The formula
∫
Λ
n
f
(
θ
)
d
θ
=
∫
Λ
1
(
⋯
∫
Λ
1
(
∫
Λ
1
f
(
θ
)
d
θ
1
)
d
θ
2
⋯
)
d
θ
n
{\displaystyle \int _{\Lambda ^{n}}f(\theta )\,\mathrm {d} \theta =\int _{\Lambda ^{1}}\left(\cdots \int _{\Lambda ^{1}}\left(\int _{\Lambda ^{1}}f(\theta )\,\mathrm {d} \theta _{1}\right)\,\mathrm {d} \theta _{2}\cdots \right)\mathrm {d} \theta _{n}}
expresses the Fubini law. On the right-hand side, the interior integral of a monomial
f
=
g
(
θ
′
)
θ
1
{\displaystyle f=g(\theta ')\theta _{1}}
is set to be
g
(
θ
′
)
,
{\displaystyle g(\theta '),}
where
θ
′
=
(
θ
2
,
…
,
θ
n
)
{\displaystyle \theta '=\left(\theta _{2},\ldots ,\theta _{n}\right)}
; the integral of
f
=
g
(
θ
′
)
{\displaystyle f=g(\theta ')}
vanishes. The integral with respect to
θ
2
{\displaystyle \theta _{2}}
is calculated in the similar way and so on.
Change of Grassmann variables [ edit ]
Let
θ
i
=
θ
i
(
ξ
1
,
…
,
ξ
n
)
,
i
=
1
,
…
,
n
,
{\displaystyle \theta _{i}=\theta _{i}\left(\xi _{1},\ldots ,\xi _{n}\right),\ i=1,\ldots ,n,}
be odd polynomials in some antisymmetric variables
ξ
1
,
…
,
ξ
n
{\displaystyle \xi _{1},\ldots ,\xi _{n}}
. The Jacobian is the matrix
D
=
{
∂
θ
i
∂
ξ
j
,
i
,
j
=
1
,
…
,
n
}
,
{\displaystyle D=\left\{{\frac {\partial \theta _{i}}{\partial \xi _{j}}},\ i,j=1,\ldots ,n\right\},}
where
∂
/
∂
ξ
j
{\displaystyle \partial /\partial \xi _{j}}
refers to the right derivative (
∂
(
θ
1
θ
2
)
/
∂
θ
2
=
θ
1
,
∂
(
θ
1
θ
2
)
/
∂
θ
1
=
−
θ
2
{\displaystyle \partial (\theta _{1}\theta _{2})/\partial \theta _{2}=\theta _{1},\;\partial (\theta _{1}\theta _{2})/\partial \theta _{1}=-\theta _{2}}
). The formula for the coordinate change reads
∫
f
(
θ
)
d
θ
=
∫
f
(
θ
(
ξ
)
)
(
det
D
)
−
1
d
ξ
.
{\displaystyle \int f(\theta )\,\mathrm {d} \theta =\int f(\theta (\xi ))(\det D)^{-1}\,\mathrm {d} \xi .}
Integrating even and odd variables [ edit ]
Consider now the algebra
Λ
m
∣
n
{\displaystyle \Lambda ^{m\mid n}}
of functions of real commuting variables
x
=
x
1
,
…
,
x
m
{\displaystyle x=x_{1},\ldots ,x_{m}}
and of anticommuting variables
θ
1
,
…
,
θ
n
{\displaystyle \theta _{1},\ldots ,\theta _{n}}
(which is called the free superalgebra of dimension
(
m
|
n
)
{\displaystyle (m|n)}
). Intuitively, a function
f
=
f
(
x
,
θ
)
∈
Λ
m
∣
n
{\displaystyle f=f(x,\theta )\in \Lambda ^{m\mid n}}
is a function of m even (bosonic, commuting) variables and of n odd (fermionic, anti-commuting) variables. More formally, an element
f
=
f
(
x
,
θ
)
∈
Λ
m
∣
n
{\displaystyle f=f(x,\theta )\in \Lambda ^{m\mid n}}
is a function of the argument
x
{\displaystyle x}
that varies in an open set
X
⊂
R
m
{\displaystyle X\subset \mathbb {R} ^{m}}
with values in the algebra
Λ
n
.
{\displaystyle \Lambda ^{n}.}
Suppose that this function is continuous and vanishes in the complement of a compact set
K
⊂
R
m
.
{\displaystyle K\subset \mathbb {R} ^{m}.}
The Berezin integral is the number
∫
Λ
m
∣
n
f
(
x
,
θ
)
d
θ
d
x
=
∫
R
m
d
x
∫
Λ
n
f
(
x
,
θ
)
d
θ
.
{\displaystyle \int _{\Lambda ^{m\mid n}}f(x,\theta )\,\mathrm {d} \theta \,\mathrm {d} x=\int _{\mathbb {R} ^{m}}\,\mathrm {d} x\int _{\Lambda ^{n}}f(x,\theta )\,\mathrm {d} \theta .}
Change of even and odd variables [ edit ]
Let a coordinate transformation be given by
x
i
=
x
i
(
y
,
ξ
)
,
i
=
1
,
…
,
m
;
θ
j
=
θ
j
(
y
,
ξ
)
,
j
=
1
,
…
,
n
,
{\displaystyle x_{i}=x_{i}(y,\xi ),\ i=1,\ldots ,m;\ \theta _{j}=\theta _{j}(y,\xi ),j=1,\ldots ,n,}
where
x
i
{\displaystyle x_{i}}
are even and
θ
j
{\displaystyle \theta _{j}}
are odd polynomials of
ξ
{\displaystyle \xi }
depending on even variables
y
.
{\displaystyle y.}
The Jacobian matrix of this transformation has the block form:
J
=
∂
(
x
,
θ
)
∂
(
y
,
ξ
)
=
(
A
B
C
D
)
,
{\displaystyle \mathrm {J} ={\frac {\partial (x,\theta )}{\partial (y,\xi )}}={\begin{pmatrix}A&B\\C&D\end{pmatrix}},}
where each even derivative
∂
/
∂
y
j
{\displaystyle \partial /\partial y_{j}}
commutes with all elements of the algebra
Λ
m
∣
n
{\displaystyle \Lambda ^{m\mid n}}
; the odd derivatives commute with even elements and anticommute with odd elements. The entries of the diagonal blocks
A
=
∂
x
/
∂
y
{\displaystyle A=\partial x/\partial y}
and
D
=
∂
θ
/
∂
ξ
{\displaystyle D=\partial \theta /\partial \xi }
are even and the entries of the off-diagonal blocks
B
=
∂
x
/
∂
ξ
,
C
=
∂
θ
/
∂
y
{\displaystyle B=\partial x/\partial \xi ,\ C=\partial \theta /\partial y}
are odd functions, where
∂
/
∂
ξ
j
{\displaystyle \partial /\partial \xi _{j}}
again mean right derivatives .
We now need the Berezinian (or superdeterminant ) of the matrix
J
{\displaystyle \mathrm {J} }
, which is the even function
Ber
J
=
det
(
A
−
B
D
−
1
C
)
det
D
−
1
{\displaystyle \operatorname {Ber} \mathrm {J} =\det \left(A-BD^{-1}C\right)\det D^{-1}}
defined when the function
det
D
{\displaystyle \det D}
is invertible in
Λ
m
∣
n
.
{\displaystyle \Lambda ^{m\mid n}.}
Suppose that the real functions
x
i
=
x
i
(
y
,
0
)
{\displaystyle x_{i}=x_{i}(y,0)}
define a smooth invertible map
F
:
Y
→
X
{\displaystyle F:Y\to X}
of open sets
X
,
Y
{\displaystyle X,Y}
in
R
m
{\displaystyle \mathbb {R} ^{m}}
and the linear part of the map
ξ
↦
θ
=
θ
(
y
,
ξ
)
{\displaystyle \xi \mapsto \theta =\theta (y,\xi )}
is invertible for each
y
∈
Y
.
{\displaystyle y\in Y.}
The general transformation law for the Berezin integral reads
∫
Λ
m
∣
n
f
(
x
,
θ
)
d
θ
d
x
=
∫
Λ
m
∣
n
f
(
x
(
y
,
ξ
)
,
θ
(
y
,
ξ
)
)
ε
Ber
J
d
ξ
d
y
=
∫
Λ
m
∣
n
f
(
x
(
y
,
ξ
)
,
θ
(
y
,
ξ
)
)
ε
det
(
A
−
B
D
−
1
C
)
det
D
d
ξ
d
y
,
{\displaystyle {\begin{aligned}&\int _{\Lambda ^{m\mid n}}f(x,\theta )\,\mathrm {d} \theta \,\mathrm {d} x=\int _{\Lambda ^{m\mid n}}f(x(y,\xi ),\theta (y,\xi ))\varepsilon \operatorname {Ber} \mathrm {J} \,\mathrm {d} \xi \,\mathrm {d} y\\[6pt]={}&\int _{\Lambda ^{m\mid n}}f(x(y,\xi ),\theta (y,\xi ))\varepsilon {\frac {\det \left(A-BD^{-1}C\right)}{\det D}}\,\mathrm {d} \xi \,\mathrm {d} y,\end{aligned}}}
where
ε
=
s
g
n
(
det
∂
x
(
y
,
0
)
/
∂
y
{\displaystyle \varepsilon =\mathrm {sgn} (\det \partial x(y,0)/\partial y}
) is the sign of the orientation of the map
F
.
{\displaystyle F.}
The superposition
f
(
x
(
y
,
ξ
)
,
θ
(
y
,
ξ
)
)
{\displaystyle f(x(y,\xi ),\theta (y,\xi ))}
is defined in the obvious way, if the functions
x
i
(
y
,
ξ
)
{\displaystyle x_{i}(y,\xi )}
do not depend on
ξ
.
{\displaystyle \xi .}
In the general case, we write
x
i
(
y
,
ξ
)
=
x
i
(
y
,
0
)
+
δ
i
,
{\displaystyle x_{i}(y,\xi )=x_{i}(y,0)+\delta _{i},}
where
δ
i
,
i
=
1
,
…
,
m
{\displaystyle \delta _{i},i=1,\ldots ,m}
are even nilpotent elements of
Λ
m
∣
n
{\displaystyle \Lambda ^{m\mid n}}
and set
f
(
x
(
y
,
ξ
)
,
θ
)
=
f
(
x
(
y
,
0
)
,
θ
)
+
∑
i
∂
f
∂
x
i
(
x
(
y
,
0
)
,
θ
)
δ
i
+
1
2
∑
i
,
j
∂
2
f
∂
x
i
∂
x
j
(
x
(
y
,
0
)
,
θ
)
δ
i
δ
j
+
⋯
,
{\displaystyle f(x(y,\xi ),\theta )=f(x(y,0),\theta )+\sum _{i}{\frac {\partial f}{\partial x_{i}}}(x(y,0),\theta )\delta _{i}+{\frac {1}{2}}\sum _{i,j}{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}(x(y,0),\theta )\delta _{i}\delta _{j}+\cdots ,}
where the Taylor series is finite.
The following formulas for Gaussian integrals are used often in the path integral formulation of quantum field theory :
∫
exp
[
−
θ
T
A
η
]
d
θ
d
η
=
det
A
{\displaystyle \int \exp \left[-\theta ^{T}A\eta \right]\,d\theta \,d\eta =\det A}
with
A
{\displaystyle A}
being a complex
n
×
n
{\displaystyle n\times n}
matrix.
∫
exp
[
−
1
2
θ
T
M
θ
]
d
θ
=
{
P
f
M
n
even
0
n
odd
{\displaystyle \int \exp \left[-{\tfrac {1}{2}}\theta ^{T}M\theta \right]\,d\theta ={\begin{cases}\mathrm {Pf} \,M&n{\mbox{ even}}\\0&n{\mbox{ odd}}\end{cases}}}
with
M
{\displaystyle M}
being a complex skew-symmetric
n
×
n
{\displaystyle n\times n}
matrix, and
P
f
M
{\displaystyle \mathrm {Pf} \,M}
being the Pfaffian of
M
{\displaystyle M}
, which fulfills
(
P
f
M
)
2
=
det
M
{\displaystyle (\mathrm {Pf} \,M)^{2}=\det M}
.
In the above formulas the notation
d
θ
=
d
θ
1
⋯
d
θ
n
{\displaystyle d\theta =d\theta _{1}\cdots \,d\theta _{n}}
is used. From these formulas, other useful formulas follow (See Appendix A in[ 2] ) :
∫
exp
[
θ
T
A
η
+
θ
T
J
+
K
T
η
]
d
η
1
d
θ
1
…
d
η
n
d
θ
n
=
det
A
exp
[
−
K
T
A
−
1
J
]
{\displaystyle \int \exp \left[\theta ^{T}A\eta +\theta ^{T}J+K^{T}\eta \right]\,d\eta _{1}\,d\theta _{1}\dots d\eta _{n}d\theta _{n}=\det A\,\,\exp[-K^{T}A^{-1}J]}
with
A
{\displaystyle A}
being an invertible
n
×
n
{\displaystyle n\times n}
matrix. Note that these integrals are all in the form of a partition function .
Berezin integral was probably first presented by David John Candlin in 1956.[ 3] Later it was independently discovered by Felix Berezin in 1966.[ 4]
Unfortunately Candlin's article failed to attract notice, and has been buried in oblivion. Berezin's work came to be widely known, and has almost been cited universally,[ footnote 1] becoming an indispensable tool to treat quantum field theory of fermions by functional integral.
Other authors contributed to these developments, including the physicists Khalatnikov[ 9] (although his paper contains mistakes), Matthews and Salam,[ 10] and Martin.[ 11]
^
For example many famous textbooks of quantum field theory cite Berezin.[ 5] [ 6] [ 7]
One exception was Stanley Mandelstam who is said to have used to cite Candlin's work.[ 8]
^ Mirror symmetry . Hori, Kentaro. Providence, RI: American Mathematical Society. 2003. p. 155. ISBN 0-8218-2955-6 . OCLC 52374327 .{{cite book }}
: CS1 maint: others (link )
^ S. Caracciolo, A. D. Sokal and A. Sportiello,
Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians,
Advances in Applied Mathematics,
Volume 50, Issue 4,
2013,
https://doi.org/10.1016/j.aam.2012.12.001 ; https://arxiv.org/abs/1105.6270
^ D.J. Candlin (1956). "On Sums over Trajectories for Systems With Fermi Statistics". Nuovo Cimento . 4 (2): 231–239. Bibcode :1956NCim....4..231C . doi :10.1007/BF02745446 . S2CID 122333001 .
^ A. Berezin, The Method of Second Quantization , Academic Press, (1966)
^ Itzykson, Claude; Zuber, Jean Bernard (1980). Quantum field theory . McGraw-Hill International Book Co. Chap 9, Notes. ISBN 0070320713 .
^ Peskin, Michael Edward; Schroeder, Daniel V. (1995). An introduction to quantum field theory . Reading: Addison-Wesley. Sec 9.5.
^ Weinberg, Steven (1995). The Quantum Theory of Fields . Vol. 1. Cambridge University Press. Chap 9, Bibliography. ISBN 0521550017 .
^ Ron Maimon (2012-06-04). "What happened to David John Candlin?" . physics.stackexchange.com. Retrieved 2024-04-08 .
^ Khalatnikov, I.M. (1955). "Predstavlenie funkzij Grina v kvantovoj elektrodinamike v forme kontinualjnyh integralov" [The Representation of Green's Function in Quantum Electrodynamics in the Form of Continual Integrals] (PDF) . Journal of Experimental and Theoretical Physics (in Russian). 28 (3): 633. Archived from the original (PDF) on 2021-04-19. Retrieved 2019-06-23 .
^ Matthews, P. T.; Salam, A. (1955). "Propagators of quantized field". Il Nuovo Cimento . 2 (1). Springer Science and Business Media LLC: 120–134. Bibcode :1955NCimS...2..120M . doi :10.1007/bf02856011 . ISSN 0029-6341 . S2CID 120719536 .
^ Martin, J. L. (23 June 1959). "The Feynman principle for a Fermi system". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences . 251 (1267). The Royal Society: 543–549. Bibcode :1959RSPSA.251..543M . doi :10.1098/rspa.1959.0127 . ISSN 2053-9169 . S2CID 123545904 .
Theodore Voronov: Geometric integration theory on Supermanifolds , Harwood Academic Publisher, ISBN 3-7186-5199-8
Berezin, Felix Alexandrovich: Introduction to Superanalysis , Springer Netherlands, ISBN 978-90-277-1668-2