Formal criteria for adjoint functors
Appearance
In category theory, a branch of mathematics, the formal criteria for adjoint functors are criteria for the existence of a left or right adjoint of a given functor.
One criterion is the following, which first appeared in Peter J. Freyd's 1964 book Abelian Categories, an Introduction to the Theory of Functors:
Freyd's adjoint functor theorem[1] — Let be a functor between categories such that is complete. Then the following are equivalent (for simplicity ignoring the set-theoretic issues):
- G has a left adjoint.
- preserves all limits and for each object x in , there exist a set I and an I-indexed family of morphisms such that each morphism is of the form for some morphism .
Another criterion is:
Kan criterion for the existence of a left adjoint — Let be a functor between categories. Then the following are equivalent.
- G has a left adjoint.
- G preserves limits and, for each object x in , the limit exists in .[2]
- The right Kan extension of the identity functor along G exists and is preserved by G.[3][4][5]
Moreover, when this is the case then a left adjoint of G can be computed using the right Kan extension.[2]
See also[edit]
References[edit]
- ^ Mac Lane 2013, Ch. V, § 6, Theorem 2.
- ^ Jump up to: a b Mac Lane 2013, Ch. X, § 1, Theorem 2.
- ^ Mac Lane 2013, Ch. X, § 7, Theorem 2.
- ^ Kelly 1982, Theorem 4.81
- ^ Medvedev 1975, p. 675
Bibliography[edit]
- Mac Lane, Saunders (17 April 2013). Categories for the Working Mathematician. Springer Science & Business Media. ISBN 978-1-4757-4721-8.
- Borceux, Francis (1994). "Adjoint functors". Handbook of Categorical Algebra. pp. 96–131. doi:10.1017/CBO9780511525858.005. ISBN 978-0-521-44178-0.
- Leinster, Tom (2014), Basic Category Theory, arXiv:1612.09375, doi:10.1017/CBO9781107360068, ISBN 978-1-107-04424-1
- Freyd, Peter (2003). "Abelian categories" (PDF). Reprints in Theory and Applications of Categories (3): 23–164.
- Kelly, Gregory Maxwell (1982), Basic concepts of enriched category theory (PDF), London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge-New York, ISBN 0-521-28702-2, MR 0651714
- Ulmer, Friedrich (1971). "The adjoint functor theorem and the Yoneda embedding". Illinois Journal of Mathematics. 15 (3). doi:10.1215/ijm/1256052605.
- Medvedev, M. Ya. (1975). "Semiadjoint functors and Kan extensions". Siberian Mathematical Journal. 15 (4): 674–676. doi:10.1007/BF00967444.
- Feferman, Solomon; Kreisel, G. (1969). "Set-Theoretical foundations of category theory". Reports of the Midwest Category Seminar III. Lecture Notes in Mathematics. Vol. 106. 3.3. Case study of current category theory: specific illustrations. pp. 201–247. doi:10.1007/BFb0059148. ISBN 978-3-540-04625-7.
{{cite book}}
: CS1 maint: location (link) CS1 maint: location missing publisher (link) - Lane, Saunders Mac (1969). "Foundations for categories and sets". Category Theory, Homology Theory and their Applications II. Lecture Notes in Mathematics. Vol. 92. V THE ADJOINT FUNCTOR THEOREM. pp. 146–164. doi:10.1007/BFb0080770. ISBN 978-3-540-04611-0.
{{cite book}}
: CS1 maint: location missing publisher (link)
External link[edit]
- Porst, Hans-E. (2023). "The history of the General Adjoint Functor Theorem". arXiv:2310.19528 [math.CT].
- Lehner, Marina (Adviser: Emily, Riehl) (2014). “All Concepts are Kan Extensions” Kan Extensions as the Most Universal of the Universal Constructions (PDF) (cenior thesis). Harvard College.
{{cite thesis}}
: CS1 maint: multiple names: authors list (link) - "adjoint functor theorem". ncatlab.org.
- Jean Goubault-Larrecq. "Adjoint Functor Theorems: GAFT and SAFT". Non-Hausdorff Topology and Domain Theory: Electronic supplements to the book.
- "solution set condition". ncatlab.org.