This lists the character tables for the more common molecular point groups used in the study of molecular symmetry . These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules , and are useful in molecular spectroscopy and quantum chemistry . Information regarding the use of the tables, as well as more extensive lists of them, can be found in the references.[1] [2] [3] [4] [5]
For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Zn : cyclic group of order n , Dn : dihedral group isomorphic to the symmetry group of an n –sided regular polygon, Sn : symmetric group on n letters, and An : alternating group on n letters.
The character tables then follow for all groups. The rows of the character tables correspond to the irreducible representations of the group, with their conventional names, known as Mulliken symbols,[6] in the left margin. The naming conventions are as follows:
A and B are singly degenerate representations, with the former transforming symmetrically around the principal axis of the group, and the latter asymmetrically. E , T , G , H , ... are doubly, triply, quadruply, quintuply, ... degenerate representations.
g and u subscripts denote symmetry and antisymmetry, respectively, with respect to a center of inversion. Subscripts "1" and "2" denote symmetry and antisymmetry, respectively, with respect to a nonprincipal rotation axis. Higher numbers denote additional representations with such asymmetry.
Single prime ( ' ) and double prime ( '' ) superscripts denote symmetry and antisymmetry, respectively, with respect to a horizontal mirror plane σh , one perpendicular to the principal rotation axis.
All but the two rightmost columns correspond to the symmetry operations which are invariant in the group. In the case of sets of similar operations with the same characters for all representations, they are presented as one column, with the number of such similar operations noted in the heading.
The body of the tables contain the characters in the respective irreducible representations for each respective symmetry operation, or set of symmetry operations. The symbol i used in the body of the table denotes the imaginary unit : i 2 = −1. Used in a column heading, it denotes the operation of inversion. A superscripted uppercase "C" denotes complex conjugation .
The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x , y and z ), rotations about those three coordinates (Rx , Ry and Rz ), and functions of the quadratic terms of the coordinates(x 2 , y 2 , z 2 , xy , xz , and yz ).
A further column is included in some tables, such as those of Salthouse and Ware[7] For example,
C
s
{\displaystyle C_{s}}
E
{\displaystyle E}
σ
h
{\displaystyle \sigma _{h}}
A
′
{\displaystyle A'}
1
{\displaystyle 1}
1
{\displaystyle 1}
x
{\displaystyle x}
,
y
{\displaystyle y}
,
R
z
{\displaystyle R_{z}}
x
2
{\displaystyle x^{2}}
,
y
2
{\displaystyle y^{2}}
,
z
2
{\displaystyle z^{2}}
,
x
y
{\displaystyle xy}
z
x
2
{\displaystyle zx^{2}}
,
y
z
2
{\displaystyle yz^{2}}
,
x
2
y
{\displaystyle x^{2}y}
,
x
y
2
{\displaystyle xy^{2}}
,
x
3
{\displaystyle x^{3}}
,
y
3
{\displaystyle y^{3}}
A
″
{\displaystyle A''}
1
{\displaystyle 1}
−
1
{\displaystyle -1}
z
{\displaystyle z}
,
R
x
{\displaystyle R_{x}}
,
R
y
{\displaystyle R_{y}}
y
z
{\displaystyle yz}
,
x
z
{\displaystyle xz}
z
3
{\displaystyle z^{3}}
,
x
y
z
{\displaystyle xyz}
,
y
2
z
{\displaystyle y^{2}z}
,
x
2
z
{\displaystyle x^{2}z}
The last column relates to cubic functions which may be used in applications regarding f orbitals in atoms.
Nonaxial symmetries [ edit ]
These groups are characterized by a lack of a proper rotation axis, noting that a
C
1
{\displaystyle C_{1}}
rotation is considered the identity operation. These groups have involutional symmetry: the only nonidentity operation, if any, is its own inverse.
In the group
C
1
{\displaystyle C_{1}}
, all functions of the Cartesian coordinates and rotations about them transform as the
A
{\displaystyle A}
irreducible representation.
Point Group
Canonical Group
Order
Character Table
C
1
{\displaystyle C_{1}}
Z
1
{\displaystyle Z_{1}}
1
{\displaystyle 1}
E
{\displaystyle E}
A
{\displaystyle A}
1
{\displaystyle 1}
C
i
{\displaystyle C_{i}}
Z
2
{\displaystyle Z_{2}}
2
E
{\displaystyle E}
i
{\displaystyle i}
A
g
{\displaystyle A_{g}}
1
{\displaystyle 1}
1
{\displaystyle 1}
R
x
{\displaystyle R_{x}}
,
R
y
{\displaystyle R_{y}}
,
R
z
{\displaystyle R_{z}}
x
2
{\displaystyle x^{2}}
,
y
2
{\displaystyle y^{2}}
,
z
2
{\displaystyle z^{2}}
,
x
y
{\displaystyle xy}
,
x
z
{\displaystyle xz}
,
y
z
{\displaystyle yz}
A
u
{\displaystyle A_{u}}
1
{\displaystyle 1}
−
1
{\displaystyle -1}
x
{\displaystyle x}
,
y
{\displaystyle y}
,
z
{\displaystyle z}
C
s
{\displaystyle C_{s}}
Z
2
{\displaystyle Z_{2}}
2
{\displaystyle 2}
E
{\displaystyle E}
σ
h
{\displaystyle \sigma _{h}}
A
′
{\displaystyle A'}
1
{\displaystyle 1}
1
{\displaystyle 1}
x
{\displaystyle x}
,
y
{\displaystyle y}
,
R
z
{\displaystyle R_{z}}
x
2
{\displaystyle x^{2}}
,
y
2
{\displaystyle y^{2}}
,
z
2
{\displaystyle z^{2}}
,
x
y
{\displaystyle xy}
A
″
{\displaystyle A''}
1
{\displaystyle 1}
−
1
{\displaystyle -1}
z
{\displaystyle z}
,
R
x
{\displaystyle R_{x}}
,
R
y
{\displaystyle R_{y}}
y
z
{\displaystyle yz}
,
x
z
{\displaystyle xz}
The families of groups with these symmetries have only one rotation axis.
The cyclic groups are denoted by C n . These groups are characterized by an n -fold proper rotation axis C n . The C 1 group is covered in the nonaxial groups section.
Point Group
Canonical Group
Order
Character Table
C 2
Z2
2
E
C 2
A
1
1
Rz , z
x 2 , y 2 , z 2 , xy
B
1
−1
Rx , Ry , x , y
xz , yz
C 3
Z3
3
E
C 3
C 3 2
θ = e 2πi /3
A
1
1
1
Rz , z
x 2 + y 2
E
1 1
θ θ C
θ C θ
(Rx , Ry ), (x , y )
(x 2 - y 2 , xy ), (xz , yz )
C 4
Z4
4
E
C 4
C 2
C 4 3
A
1
1
1
1
Rz , z
x 2 + y 2 , z 2
B
1
−1
1
−1
x 2 − y 2 , xy
E
1 1
i −i
−1 −1
−i i
(Rx , Ry ), (x , y )
(xz , yz )
C 5
Z5
5
E
C 5
C 5 2
C 5 3
C 5 4
θ = e 2πi /5
A
1
1
1
1
1
Rz , z
x 2 + y 2 , z 2
E1
1 1
θ θ C
θ 2 (θ 2 )C
(θ 2 )C θ 2
θ C θ
(Rx , Ry ), (x , y )
(xz , yz )
E2
1 1
θ 2 (θ 2 )C
θ C θ
θ θ C
(θ 2 )C θ 2
(x 2 - y 2 , xy )
C 6
Z6
6
E
C 6
C 3
C 2
C 3 2
C 6 5
θ = e 2πi /6
A
1
1
1
1
1
1
Rz , z
x 2 + y 2 , z 2
B
1
−1
1
−1
1
−1
E1
1 1
θ θ C
−θ C −θ
−1 −1
−θ −θ C
θ C −θ
(Rx , Ry ), (x , y )
(xz , yz )
E2
1 1
−θ C −θ
−θ −θ C
1 1
−θ C −θ
−θ −θ C
(x 2 − y 2 , xy )
C 8
Z8
8
E
C 8
C 4
C 8 3
C 2
C 8 5
C 4 3
C 8 7
θ = e 2πi /8
A
1
1
1
1
1
1
1
1
Rz , z
x 2 + y 2 , z 2
B
1
−1
1
−1
1
−1
1
−1
E1
1 1
θ θ C
i −i
−θ C −θ
−1 −1
−θ −θ C
−i i
θ C θ
(Rx , Ry ), (x , y )
(xz , yz )
E2
1 1
i −i
−1 −1
−i i
1 1
i −i
−1 −1
−i i
(x 2 − y 2 , xy )
E3
1 1
−θ −θ C
i −i
θ C θ
−1 −1
θ θ C
−i i
−θ C −θ
Reflection groups (C nh )[ edit ]
The reflection groups are denoted by C nh . These groups are characterized by i) an n -fold proper rotation axis C n ; ii) a mirror plane σh normal to C n . The C 1h group is the same as the C s group in the nonaxial groups section.
Point Group
Canonical group
Order
Character Table
C 2h
Z2 × Z2
4
E
C 2
i
σh
Ag
1
1
1
1
Rz
x 2 , y 2 , z 2 , xy
Bg
1
−1
1
−1
Rx , Ry
xz , yz
Au
1
1
−1
−1
z
Bu
1
−1
−1
1
x , y
C 3h
Z6
6
E
C 3
C 3 2
σh
S 3
S 3 5
θ = e 2πi /3
A'
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
E'
1 1
θ θ C
θ C θ
1 1
θ θ C
θ C θ
(x , y )
(x 2 − y 2 , xy )
A''
1
1
1
−1
−1
−1
z
E''
1 1
θ θ C
θ C θ
−1 −1
−θ −θ C
−θ C −θ
(Rx , Ry )
(xz , yz )
C 4h
Z2 × Z4
8
E
C 4
C 2
C 4 3
i
S 4 3
σh
S 4
Ag
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
Bg
1
−1
1
−1
1
−1
1
−1
x 2 − y 2 , xy
Eg
1 1
i −i
−1 −1
−i i
1 1
i −i
−1 −1
−i i
(Rx , Ry )
(xz , yz )
Au
1
1
1
1
−1
−1
−1
−1
z
Bu
1
−1
1
−1
−1
1
−1
1
Eu
1 1
i −i
−1 −1
−i i
−1 −1
−i i
1 1
i −i
(x , y )
C 5h
Z10
10
E
C 5
C 5 2
C 5 3
C 5 4
σh
S 5
S 5 7
S 5 3
S 5 9
θ = e 2πi /5
A'
1
1
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
E1 '
1 1
θ θ C
θ 2 (θ 2 )C
(θ 2 )C θ 2
θ C θ
1 1
θ θ C
θ 2 (θ 2 )C
(θ 2 )C θ 2
θ C θ
(x , y )
E2 '
1 1
θ 2 (θ 2 )C
θ C θ
θ θ C
(θ 2 )C θ 2
1 1
θ 2 (θ 2 )C
θ C θ
θ θ C
(θ 2 )C θ 2
(x 2 - y 2 , xy )
A''
1
1
1
1
1
−1
−1
−1
−1
−1
z
E1 ''
1 1
θ θ C
θ 2 (θ 2 )C
(θ 2 )C θ 2
θ C θ
−1 −1
−θ -θ C
−θ 2 −(θ 2 )C
−(θ 2 )C −θ 2
−θ C −θ
(Rx , Ry )
(xz , yz )
E2 ''
1 1
θ 2 (θ 2 )C
θ C θ
θ θ C
(θ 2 )C θ 2
−1 −1
−θ 2 −(θ 2 )C
−θ C −θ
−θ −θ C
−(θ 2 )C −θ 2
C 6h
Z2 × Z6
12
E
C 6
C 3
C 2
C 3 2
C 6 5
i
S 3 5
S 6 5
σh
S 6
S 3
θ = e 2πi /6
Ag
1
1
1
1
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
Bg
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
E1g
1 1
θ θ C
−θ C −θ
−1 −1
−θ −θ C
θ C θ
1 1
θ θ C
−θ C −θ
−1 −1
−θ −θ C
θ C θ
(Rx , Ry )
(xz , yz )
E2g
1 1
−θ C −θ
−θ −θ C
1 1
−θ C −θ
−θ −θ C
1 1
−θ C −θ
−θ −θ C
1 1
−θ C −θ
−θ −θ C
(x 2 − y 2 , xy )
Au
1
1
1
1
1
1
−1
−1
−1
−1
−1
−1
z
Bu
1
−1
1
−1
1
−1
−1
1
−1
1
−1
1
E1u
1 1
θ θ C
−θ C −θ
−1 −1
−θ −θ C
θ C θ
−1 −1
−θ −θ C
θ C θ
1 1
θ θ C
−θ C −θ
(x , y )
E2u
1 1
−θ C −θ
−θ −θ C
1 1
−θ C −θ
−θ −θ C
−1 −1
θ C θ
θ θ C
−1 −1
θ C θ
θ θ C
Pyramidal groups (C nv )[ edit ]
The pyramidal groups are denoted by C nv . These groups are characterized by i) an n -fold proper rotation axis C n ; ii) n mirror planes σv which contain C n . The C 1v group is the same as the C s group in the nonaxial groups section.
Point Group
Canonical group
Order
Character Table
C 2v
Z2 × Z2 (=D2 )
4
E
C 2
σv
σv '
A1
1
1
1
1
z
x 2 , y 2 , z 2
A2
1
1
−1
−1
Rz
xy
B1
1
−1
1
−1
Ry , x
xz
B2
1
−1
−1
1
Rx , y
yz
C 3v
D3
6
E
2 C 3
3 σv
A1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
−1
Rz
E
2
−1
0
(Rx , Ry ), (x , y )
(x 2 − y 2 , xy ), (xz , yz )
C 4v
D4
8
E
2 C 4
C 2
2 σv
2 σd
A1
1
1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
1
−1
−1
Rz
B1
1
−1
1
1
−1
x 2 − y 2
B2
1
−1
1
−1
1
xy
E
2
0
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
C 5v
D5
10
E
2 C 5
2 C 5 2
5 σv
θ = 2π/5
A1
1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
1
−1
Rz
E1
2
2 cos(θ )
2 cos(2θ )
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
2 cos(2θ )
2 cos(θ )
0
(x 2 − y 2 , xy )
C 6v
D6
12
E
2 C 6
2 C 3
C 2
3 σv
3 σd
A1
1
1
1
1
1
1
z
x 2 + y 2 , z 2
A2
1
1
1
1
−1
−1
Rz
B1
1
−1
1
−1
1
−1
B2
1
−1
1
−1
−1
1
E1
2
1
−1
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
−1
−1
2
0
0
(x 2 − y 2 , xy )
Improper rotation groups (S n )[ edit ]
The improper rotation groups are denoted by Sn . These groups are characterized by an n -fold improper rotation axis Sn , where n is necessarily even. The S 2 group is the same as the C i group in the nonaxial groups section. Sn groups with an odd value of n are identical to Cn h groups of same n and are therefore not considered here (in particular, S1 is identical to Cs ).
The S8 table reflects the 2007 discovery of errors in older references.[4] Specifically, (Rx , Ry ) transform not as E1 but rather as E3 .
Point Group
Canonical group
Order
Character Table
S 4
Z4
4
E
S 4
C 2
S 4 3
A
1
1
1
1
Rz ,
x 2 + y 2 , z 2
B
1
−1
1
−1
z
x 2 − y 2 , xy
E
1 1
i −i
−1 −1
−i i
(Rx , Ry ), (x , y )
(xz , yz )
S 6
Z6
6
E
S 6
C 3
i
C 3 2
S 6 5
θ = e 2πi /6
Ag
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
Eg
1 1
θ C θ
θ θ C
1 1
θ C θ
θ θ C
(Rx , Ry )
(x 2 − y 2 , xy ), (xz , yz )
Au
1
−1
1
−1
1
−1
z
Eu
1 1
−θ C −θ
θ θ C
−1 −1
θ C θ
−θ −θ C
(x , y )
S 8
Z8
8
E
S 8
C 4
S 8 3
i
S 8 5
C 4 2
S 8 7
θ = e 2πi /8
A
1
1
1
1
1
1
1
1
Rz
x 2 + y 2 , z 2
B
1
−1
1
−1
−1
−1
1
−1
z
E1
1 1
θ θ C
i −i
−θ C −θ
−1 −1
−θ −θ C
−i i
θ C θ
(x , y )
(xz , yz )
E2
1 1
i −i
−1 −1
−i i
1 1
i −i
−1 −1
−i i
(x 2 − y 2 , xy )
E3
1 1
−θ C −θ
−i i
θ θ C
−1 −1
θ C θ
i −i
−θ −θ C
(Rx , Ry )
(xz , yz )
Dihedral symmetries [ edit ]
The families of groups with these symmetries are characterized by 2-fold proper rotation axes normal to a principal rotation axis.
Dihedral groups (D n )[ edit ]
The dihedral groups are denoted by D n . These groups are characterized by i) an n -fold proper rotation axis C n ; ii) n 2-fold proper rotation axes C 2 normal to C n . The D 1 group is the same as the C 2 group in the cyclic groups section.
Point Group
Canonical group
Order
Character Table
D 2
Z2 × Z2 (=D2 )
4
E
C 2 (z )
C 2 (x )
C 2 (y )
A
1
1
1
1
x 2 , y 2 , z 2
B1
1
1
−1
−1
Rz , z
xy
B2
1
−1
−1
1
Ry , y
xz
B3
1
−1
1
−1
Rx , x
yz
D 3
D3
6
E
2 C 3
3 C' 2
A1
1
1
1
x 2 + y 2 , z 2
A2
1
1
−1
Rz , z
E
2
−1
0
(Rx , Ry ), (x , y )
(x 2 − y 2 , xy ), (xz , yz )
D 4
D4
8
E
2 C 4
C 2
2 C 2 '
2 C 2 ''
A1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
−1
−1
Rz , z
B1
1
−1
1
1
−1
x 2 − y 2
B2
1
−1
1
−1
1
xy
E
2
0
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
D 5
D5
10
E
2 C 5
2 C 5 2
5 C 2
θ =2π/5
A1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
−1
Rz , z
E1
2
2 cos(θ )
2 cos(2θ )
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
2 cos(2θ )
2 cos(θ )
0
(x 2 − y 2 , xy )
D 6
D6
12
E
2 C 6
2 C 3
C 2
3 C 2 '
3 C 2 ''
A1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
1
−1
−1
Rz , z
B1
1
−1
1
−1
1
−1
B2
1
−1
1
−1
−1
1
E1
2
1
−1
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
E2
2
−1
−1
2
0
0
(x 2 − y 2 , xy )
Prismatic groups (D nh )[ edit ]
The prismatic groups are denoted by D nh . These groups are characterized by i) an n -fold proper rotation axis C n ; ii) n 2-fold proper rotation axes C 2 normal to C n ; iii) a mirror plane σh normal to C n and containing the C 2 s. The D 1h group is the same as the C 2v group in the pyramidal groups section.
The D8h table reflects the 2007 discovery of errors in older references.[4] Specifically, symmetry operation column headers 2S8 and 2S8 3 were reversed in the older references.
Point Group
Canonical group
Order
Character Table
D 2h
Z2 ×Z2 ×Z2 (=Z2 ×D2 )
8
E
C 2
C 2 (x)
C 2 (y)
i
σ(xy)
σ(xz)
σ(yz)
Ag
1
1
1
1
1
1
1
1
x 2 , y 2 , z 2
B1g
1
1
−1
−1
1
1
−1
−1
Rz
xy
B2g
1
−1
−1
1
1
−1
1
−1
Ry
xz
B3g
1
−1
1
−1
1
−1
−1
1
Rx
yz
Au
1
1
1
1
−1
−1
−1
−1
B1u
1
1
−1
−1
−1
−1
1
1
z
B2u
1
−1
−1
1
−1
1
−1
1
y
B3u
1
−1
1
−1
−1
1
1
−1
x
D 3h
D6
12
E
2 C 3
3 C 2
σh
2 S 3
3 σv
A1 '
1
1
1
1
1
1
x 2 + y 2 , z 2
A2 '
1
1
−1
1
1
−1
Rz
E'
2
−1
0
2
−1
0
(x , y )
(x 2 − y 2 , xy )
A1 ''
1
1
1
−1
−1
−1
A2 ''
1
1
−1
−1
−1
1
z
E''
2
−1
0
−2
1
0
(Rx , Ry )
(xz , yz )
D 4h
Z2 ×D4
16
E
2 C 4
C 2
2 C 2 '
2 C 2 ''
i
2 S 4
σh
2 σv
2 σd
A1g
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
−1
−1
1
1
1
−1
−1
Rz
B1g
1
−1
1
1
−1
1
−1
1
1
−1
x 2 − y 2
B2g
1
−1
1
−1
1
1
−1
1
−1
1
xy
Eg
2
0
−2
0
0
2
0
−2
0
0
(Rx , Ry )
(xz , yz )
A1u
1
1
1
1
1
−1
−1
−1
−1
−1
A2u
1
1
1
−1
−1
−1
−1
−1
1
1
z
B1u
1
−1
1
1
−1
−1
1
−1
−1
1
B2u
1
−1
1
−1
1
−1
1
−1
1
−1
Eu
2
0
−2
0
0
−2
0
2
0
0
(x , y )
D 5h
D10
20
E
2 C 5
2 C 5 2
5 C 2
σh
2 S 5
2 S 5 3
5 σv
θ =2π/5
A1 '
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2 '
1
1
1
−1
1
1
1
−1
Rz
E1 '
2
2 cos(θ )
2 cos(2θ )
0
2
2 cos(θ )
2 cos(2θ )
0
(x , y )
E2 '
2
2 cos(2θ )
2 cos(θ )
0
2
2 cos(2θ )
2 cos(θ )
0
(x 2 − y 2 , xy )
A1 ''
1
1
1
1
−1
−1
−1
−1
A2 ''
1
1
1
−1
−1
−1
−1
1
z
E1 ''
2
2 cos(θ )
2 cos(2θ )
0
−2
−2 cos(θ )
−2 cos(2θ )
0
(Rx , Ry )
(xz , yz )
E2 ''
2
2 cos(2θ )
2 cos(θ )
0
−2
−2 cos(2θ )
−2 cos(θ )
0
D 6h
Z2 ×D6
24
E
2 C 6
2 C 3
C 2
3 C 2 '
3 C 2 ''
i
2 S 3
2 S 6
σh
3 σd
3 σv
A1g
1
1
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
1
−1
−1
1
1
1
1
−1
−1
Rz
B1g
1
−1
1
−1
1
−1
1
−1
1
−1
1
−1
B2g
1
−1
1
−1
−1
1
1
−1
1
−1
−1
1
E1g
2
1
−1
−2
0
0
2
1
−1
−2
0
0
(Rx , Ry )
(xz , yz )
E2g
2
−1
−1
2
0
0
2
−1
−1
2
0
0
(x 2 − y 2 , xy )
A1u
1
1
1
1
1
1
−1
−1
−1
−1
−1
−1
A2u
1
1
1
1
−1
−1
−1
−1
−1
−1
1
1
z
B1u
1
−1
1
−1
1
−1
−1
1
−1
1
−1
1
B2u
1
−1
1
−1
−1
1
−1
1
−1
1
1
−1
E1u
2
1
−1
−2
0
0
−2
−1
1
2
0
0
(x , y )
E2u
2
−1
−1
2
0
0
−2
1
1
−2
0
0
D 8h
Z2 ×D8
32
E
2 C 8
2 C 8 3
2 C 4
C 2
4 C 2 '
4 C 2 ''
i
2 S 8 3
2 S 8
2 S 4
σh
4 σd
4 σv
θ =21/2
A1g
1
1
1
1
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
1
1
−1
−1
1
1
1
1
1
−1
−1
Rz
B1g
1
−1
−1
1
1
1
−1
1
−1
−1
1
1
1
−1
B2g
1
−1
−1
1
1
−1
1
1
−1
−1
1
1
−1
1
E1g
2
θ
−θ
0
−2
0
0
2
θ
−θ
0
−2
0
0
(Rx , Ry )
(xz , yz )
E2g
2
0
0
−2
2
0
0
2
0
0
−2
2
0
0
(x 2 − y 2 , xy )
E3g
2
−θ
θ
0
−2
0
0
2
−θ
θ
0
−2
0
0
A1u
1
1
1
1
1
1
1
−1
−1
−1
−1
−1
−1
−1
A2u
1
1
1
1
1
−1
−1
−1
−1
−1
−1
−1
1
1
z
B1u
1
−1
−1
1
1
1
−1
−1
1
1
−1
−1
−1
1
B2u
1
−1
−1
1
1
−1
1
−1
1
1
−1
−1
1
−1
E1u
2
θ
−θ
0
−2
0
0
−2
−θ
θ
0
2
0
0
(x , y )
E2u
2
0
0
−2
2
0
0
−2
0
0
2
−2
0
0
E3u
2
−θ
θ
0
−2
0
0
−2
θ
−θ
0
2
0
0
Antiprismatic groups (D nd )[ edit ]
The antiprismatic groups are denoted by D nd . These groups are characterized by i) an n -fold proper rotation axis C n ; ii) n 2-fold proper rotation axes C 2 normal to C n ; iii) n mirror planes σd which contain C n . The D 1d group is the same as the C 2h group in the reflection groups section.
Point Group
Canonical group
Order
Character Table
D 2d
D4
8
E
2 S 4
C 2
2 C 2 '
2 σd
A1
1
1
1
1
1
x 2 , y 2 , z 2
A2
1
1
1
−1
−1
Rz
B1
1
−1
1
1
−1
x 2 − y 2
B2
1
−1
1
−1
1
z
xy
E
2
0
−2
0
0
(Rx , Ry ), (x , y )
(xz , yz )
D 3d
D6
12
E
2 C 3
3 C 2
i
2 S 6
3 σd
A1g
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
−1
1
1
−1
Rz
Eg
2
−1
0
2
−1
0
(Rx , Ry )
(x 2 − y 2 , xy ), (xz , yz )
A1u
1
1
1
−1
−1
−1
A2u
1
1
−1
−1
−1
1
z
Eu
2
−1
0
−2
1
0
(x , y )
D 4d
D8
16
E
2 S 8
2 C 4
2 S 8 3
C 2
4 C 2 '
4 σd
θ =21/2
A1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
1
1
−1
−1
Rz
B1
1
−1
1
−1
1
1
−1
B2
1
−1
1
−1
1
−1
1
z
E1
2
θ
0
−θ
−2
0
0
(x , y )
E2
2
0
−2
0
2
0
0
(x 2 − y 2 , xy )
E3
2
−θ
0
θ
−2
0
0
(Rx , Ry )
(xz , yz )
D 5d
D10
20
E
2 C 5
2 C 5 2
5 C 2
i
2 S 10
2 S 10 3
5 σd
θ =2π/5
A1g
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2g
1
1
1
−1
1
1
1
−1
Rz
E1g
2
2 cos(θ )
2 cos(2θ )
0
2
2 cos(2θ )
2 cos(θ )
0
(Rx , Ry )
(xz , yz )
E2g
2
2 cos(2θ )
2 cos(θ )
0
2
2 cos(θ )
2 cos(2θ )
0
(x 2 − y 2 , xy )
A1u
1
1
1
1
−1
−1
−1
−1
A2u
1
1
1
−1
−1
−1
−1
1
z
E1u
2
2 cos(θ )
2 cos(2θ )
0
−2
−2 cos(2θ )
−2 cos(θ )
0
(x , y )
E2u
2
2 cos(2θ )
2 cos(θ )
0
−2
−2 cos(θ )
−2 cos(2θ )
0
D 6d
D12
24
E
2 S 12
2 C 6
2 S 4
2 C 3
2 S 12 5
C 2
6 C 2 '
6 σd
θ =31/2
A1
1
1
1
1
1
1
1
1
1
x 2 + y 2 , z 2
A2
1
1
1
1
1
1
1
−1
−1
Rz
B1
1
−1
1
−1
1
−1
1
1
−1
B2
1
−1
1
−1
1
−1
1
−1
1
z
E1
2
θ
1
0
−1
−θ
−2
0
0
(x , y )
E2
2
1
−1
−2
−1
1
2
0
0
(x 2 − y 2 , xy )
E3
2
0
−2
0
2
0
−2
0
0
E4
2
−1
−1
2
−1
−1
2
0
0
E5
2
−θ
1
0
−1
θ
−2
0
0
(Rx , Ry )
(xz , yz )
These symmetries are characterized by having more than one proper rotation axis of order greater than 2.
These polyhedral groups are characterized by not having a C 5 proper rotation axis.
Point Group
Canonical group
Order
Character Table
T
A4
12
E
4 C 3
4 C 3 2
3 C 2
θ =e2π i /3
A
1
1
1
1
x 2 + y 2 + z 2
E
1 1
θ θ C
θ C θ
1 1
(2 z 2 − x 2 − y 2 , x 2 − y 2 )
T
3
0
0
−1
(Rx , Ry , Rz ), (x , y , z )
(xy , xz , yz )
Td
S4
24
E
8 C 3
3 C 2
6 S 4
6 σd
A1
1
1
1
1
1
x 2 + y 2 + z 2
A2
1
1
1
−1
−1
E
2
−1
2
0
0
(2 z 2 − x 2 − y 2 , x 2 − y 2 )
T1
3
0
−1
1
−1
(Rx , Ry , Rz )
T2
3
0
−1
−1
1
(x , y , z )
(xy , xz , yz )
Th
Z2 ×A4
24
E
4 C 3
4 C 3 2
3 C 2
i
4 S 6
4 S 6 5
3 σh
θ =e2π i /3
Ag
1
1
1
1
1
1
1
1
x 2 + y 2 + z 2
Au
1
1
1
1
−1
−1
−1
−1
Eg
1 1
θ θ C
θ C θ
1 1
1 1
θ θ C
θ C θ
1 1
(2 z 2 − x 2 − y 2 , x 2 − y 2 )
Eu
1 1
θ θ C
θ C θ
1 1
−1 −1
−θ −θ C
−θ C −θ
−1 −1
Tg
3
0
0
−1
3
0
0
−1
(Rx , Ry , Rz )
(xy , xz , yz )
Tu
3
0
0
−1
−3
0
0
1
(x , y , z )
O
S4
24
E
6 C 4
3 C 2 (C 4 2 )
8 C 3
6 C' 2
A1
1
1
1
1
1
x 2 + y 2 + z 2
A2
1
−1
1
1
−1
E
2
0
2
−1
0
(2 z 2 − x 2 − y 2 , x 2 − y 2 )
T1
3
1
−1
0
−1
(Rx , Ry , Rz ), (x , y , z )
T2
3
−1
−1
0
1
(xy , xz , yz )
Oh
Z2 ×S4
48
E
8 C 3
6 C 2
6 C 4
3 C 2 (C 4 2 )
i
6 S 4
8 S 6
3 σh
6 σd
A1g
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 + z 2
A2g
1
1
−1
−1
1
1
−1
1
1
−1
Eg
2
−1
0
0
2
2
0
−1
2
0
(2 z 2 − x 2 − y 2 , x 2 − y 2 )
T1g
3
0
−1
1
−1
3
1
0
−1
−1
(Rx , Ry , Rz )
T2g
3
0
1
−1
−1
3
−1
0
−1
1
(xy , xz , yz )
A1u
1
1
1
1
1
−1
−1
−1
−1
−1
A2u
1
1
−1
−1
1
−1
1
−1
−1
1
Eu
2
−1
0
0
2
−2
0
1
−2
0
T1u
3
0
−1
1
−1
−3
−1
0
1
1
(x , y , z )
T2u
3
0
1
−1
−1
−3
1
0
1
−1
These polyhedral groups are characterized by having a C 5 proper rotation axis.
Point Group
Canonical group
Order
Character Table
I
A5
60
E
12 C 5
12 C 5 2
20 C 3
15 C 2
θ =π/5
A
1
1
1
1
1
x 2 + y 2 + z 2
T1
3
2 cos(θ )
2 cos(3θ )
0
−1
(Rx , Ry , Rz ), (x , y , z )
T2
3
2 cos(3θ )
2 cos(θ )
0
−1
G
4
−1
−1
1
0
H
5
0
0
−1
1
(2 z 2 − x 2 − y 2 , x 2 − y 2 , xy , xz , yz )
Ih
Z2 ×A5
120
E
12 C 5
12 C 5 2
20 C 3
15 C 2
i
12 S 10
12 S 10 3
20 S 6
15 σ
θ =π/5
Ag
1
1
1
1
1
1
1
1
1
1
x 2 + y 2 + z 2
T1g
3
2 cos(θ )
2 cos(3θ )
0
−1
3
2 cos(3θ )
2 cos(θ )
0
−1
(Rx , Ry , Rz )
T2g
3
2 cos(3θ )
2 cos(θ )
0
−1
3
2 cos(θ )
2 cos(3θ )
0
−1
Gg
4
−1
−1
1
0
4
−1
−1
1
0
Hg
5
0
0
−1
1
5
0
0
−1
1
(2 z 2 − x 2 − y 2 , x 2 − y 2 , xy , xz , yz )
Au
1
1
1
1
1
−1
−1
−1
−1
−1
T1u
3
2 cos(θ )
2 cos(3θ )
0
−1
−3
−2 cos(3θ )
−2 cos(θ )
0
1
(x , y , z )
T2u
3
2 cos(3θ )
2 cos(θ )
0
−1
−3
−2 cos(θ )
−2 cos(3θ )
0
1
Gu
4
−1
−1
1
0
−4
1
1
−1
0
Hu
5
0
0
−1
1
−5
0
0
1
−1
Linear (cylindrical) groups[ edit ]
These groups are characterized by having a proper rotation axis C ∞ around which the symmetry is invariant to any rotation.
Point Group
Character Table
C∞v
E
2 C ∞ Φ
...
∞ σv
A1 =Σ+
1
1
...
1
z
x 2 + y 2 , z 2
A2 =Σ−
1
1
...
−1
Rz
E1 =Π
2
2 cos(Φ)
...
0
(x , y ), (Rx , Ry )
(xz , yz )
E2 =Δ
2
2 cos(2Φ)
...
0
(x 2 - y 2 , xy )
E3 =Φ
2
2 cos(3Φ)
...
0
...
...
...
...
...
D∞h
E
2 C ∞ Φ
...
∞ σv
i
2 S ∞ Φ
...
∞ C 2
Σg +
1
1
...
1
1
1
...
1
x 2 + y 2 , z 2
Σg −
1
1
...
−1
1
1
...
−1
Rz
Πg
2
2 cos(Φ)
...
0
2
−2 cos(Φ)
..
0
(Rx , Ry )
(xz , yz )
Δg
2
2 cos(2Φ)
...
0
2
2 cos(2Φ)
..
0
(x 2 − y 2 , xy )
...
...
...
...
...
...
...
...
...
Σu +
1
1
...
1
−1
−1
...
−1
z
Σu −
1
1
...
−1
−1
−1
...
1
Πu
2
2 cos(Φ)
...
0
−2
2 cos(Φ)
..
0
(x , y )
Δu
2
2 cos(2Φ)
...
0
−2
−2 cos(2Φ)
..
0
...
...
...
...
...
...
...
...
...
^ Drago, Russell S. (1977). Physical Methods in Chemistry . W.B. Saunders Company. ISBN 0-7216-3184-3 .
^ Cotton, F. Albert (1990). Chemical Applications of Group Theory . John Wiley & Sons: New York. ISBN 0-471-51094-7 .
^ Gelessus, Achim (2007-07-12). "Character tables for chemically important point groups" . Jacobs University, Bremin; Computational Laboratory for Analysis, Modeling, and Visualization. Retrieved 2007-07-12 .
^ a b c Shirts, Randall B. (2007). "Correcting Two Long-Standing Errors in Point Group Symmetry Character Tables" . Journal of Chemical Education . 84 (1882). American Chemical Society : 1882. Bibcode :2007JChEd..84.1882S . doi :10.1021/ed084p1882 . Retrieved 2007-10-16 .
^ Vanovschi, Vitalii. "POINT GROUP SYMMETRY CHARACTER TABLES" . WebQC.Org. Retrieved 2008-10-29 .
^ Mulliken, Robert S. (1933-02-15). "Electronic Structures of Polyatomic Molecules and Valence. IV. Electronic States, Quantum Theory of the Double Bond". Physical Review . 43 (4). American Physical Society (APS): 279–302. Bibcode :1933PhRv...43..279M . doi :10.1103/physrev.43.279 . ISSN 0031-899X .
^ Salthouse, J.A.; Ware, M.J. (1972). Point group character tables and related data . Cambridge: Cambridge University Press. pp. 88 + v. ISBN 0-521-08139-4 .
Bunker, Philip; Jensen, Per (2006). Molecular Symmetry and Spectroscopy, Second edition . Ottawa : NRC Research Press. ISBN 0-660-19628-X .