In differential geometry, the integration along fibers of a k-form yields a
-form where m is the dimension of the fiber, via "integration". It is also called the fiber integration.
Let
be a fiber bundle over a manifold with compact oriented fibers. If
is a k-form on E, then for tangent vectors wi's at b, let

where
is the induced top-form on the fiber
; i.e., an
-form given by: with
lifts of
to
,

(To see
is smooth, work it out in coordinates; cf. an example below.)
Then
is a linear map
. By Stokes' formula, if the fibers have no boundaries(i.e.
), the map descends to de Rham cohomology:

This is also called the fiber integration.
Now, suppose
is a sphere bundle; i.e., the typical fiber is a sphere. Then there is an exact sequence
, K the kernel,
which leads to a long exact sequence, dropping the coefficient
and using
:
,
called the Gysin sequence.
Let
be an obvious projection. First assume
with coordinates
and consider a k-form:

Then, at each point in M,
[1]
From this local calculation, the next formula follows easily (see Poincaré_lemma#Direct_proof): if
is any k-form on

where
is the restriction of
to
.
As an application of this formula, let
be a smooth map (thought of as a homotopy). Then the composition
is a homotopy operator (also called a chain homotopy):

which implies
induce the same map on cohomology, the fact known as the homotopy invariance of de Rham cohomology. As a corollary, for example, let U be an open ball in Rn with center at the origin and let
. Then
, the fact known as the Poincaré lemma.
Given a vector bundle π : E → B over a manifold, we say a differential form α on E has vertical-compact support if the restriction
has compact support for each b in B. We write
for the vector space of differential forms on E with vertical-compact support.
If E is oriented as a vector bundle, exactly as before, we can define the integration along the fiber:

The following is known as the projection formula.[2] We make
a right
-module by setting
.
Proof: 1. Since the assertion is local, we can assume π is trivial: i.e.,
is a projection. Let
be the coordinates on the fiber. If
, then, since
is a ring homomorphism,

Similarly, both sides are zero if α does not contain dt. The proof of 2. is similar.
- ^ If
, then, at a point b of M, identifying
's with their lifts, we have:

and so
![{\displaystyle \pi _{*}(\alpha )_{b}(\partial _{x_{j_{1}}},\dots ,\partial _{x_{j_{k-1}}})=\int _{[0,1]}\beta =\int _{0}^{1}g(b,t)\,dt.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49441543b3468fb4adbc0dcd040f1dd5e4ff6d8c)
Hence,
By the same computation,
if dt does not appear in α.
- ^ Bott & Tu 1982, Proposition 6.15.; note they use a different definition than the one here, resulting in change in sign.