In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions.
Given a hypersurface
defined by a degree
polynomial
and a rational
-form
on
with a pole of order
on
, then we can construct a cohomology class
. If
we recover the classical residue construction.
Historical construction
[edit]
When Poincaré first introduced residues[1] he was studying period integrals of the form
for 
where
was a rational differential form with poles along a divisor
. He was able to make the reduction of this integral to an integral of the form
for 
where
, sending
to the boundary of a solid
-tube around
on the smooth locus
of the divisor. If

on an affine chart where
is irreducible of degree
and
(so there is no poles on the line at infinity[2] page 150). Then, he gave a formula for computing this residue as

which are both cohomologous forms.
Preliminary definition
[edit]
Given the setup in the introduction, let
be the space of meromorphic
-forms on
which have poles of order up to
. Notice that the standard differential
sends

Define

as the rational de-Rham cohomology groups. They form a filtration

corresponding to the Hodge filtration.
Definition of residue
[edit]
Consider an
-cycle
. We take a tube
around
(which is locally isomorphic to
) that lies within the complement of
. Since this is an
-cycle, we can integrate a rational
-form
and get a number. If we write this as

then we get a linear transformation on the homology classes. Homology/cohomology duality implies that this is a cohomology class

which we call the residue. Notice if we restrict to the case
, this is just the standard residue from complex analysis (although we extend our meromorphic
-form to all of
. This definition can be summarized as the map

Algorithm for computing this class
[edit]
There is a simple recursive method for computing the residues which reduces to the classical case of
. Recall that the residue of a
-form

If we consider a chart containing
where it is the vanishing locus of
, we can write a meromorphic
-form with pole on
as

Then we can write it out as

This shows that the two cohomology classes
![{\displaystyle \left[{\frac {dw}{w^{k}}}\wedge \rho \right]=\left[{\frac {d\rho }{(k-1)w^{k-1}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42d43255b479c72a827155e292d29e75b40a85d2)
are equal. We have thus reduced the order of the pole hence we can use recursion to get a pole of order
and define the residue of
as

For example, consider the curve
defined by the polynomial

Then, we can apply the previous algorithm to compute the residue of

Since

and

we have that

This implies that
