In mathematics, the Jacobi method for complex Hermitian matrices is a generalization of the Jacobi iteration method . The Jacobi iteration method is also explained in "Introduction to Linear Algebra" by Strang (1993) .
The complex unitary rotation matrices R pq can be used for Jacobi iteration of complex Hermitian matrices in order to find a numerical estimation of their eigenvectors and eigenvalues simultaneously.
Similar to the Givens rotation matrices , R pq are defined as:
(
R
p
q
)
m
,
n
=
δ
m
,
n
m
,
n
≠
p
,
q
,
(
R
p
q
)
p
,
p
=
+
1
2
e
−
i
θ
,
(
R
p
q
)
q
,
p
=
+
1
2
e
−
i
θ
,
(
R
p
q
)
p
,
q
=
−
1
2
e
+
i
θ
,
(
R
p
q
)
q
,
q
=
+
1
2
e
+
i
θ
{\displaystyle {\begin{aligned}(R_{pq})_{m,n}&=\delta _{m,n}&\qquad m,n\neq p,q,\\[10pt](R_{pq})_{p,p}&={\frac {+1}{\sqrt {2}}}e^{-i\theta },\\[10pt](R_{pq})_{q,p}&={\frac {+1}{\sqrt {2}}}e^{-i\theta },\\[10pt](R_{pq})_{p,q}&={\frac {-1}{\sqrt {2}}}e^{+i\theta },\\[10pt](R_{pq})_{q,q}&={\frac {+1}{\sqrt {2}}}e^{+i\theta }\end{aligned}}}
Each rotation matrix, R pq , will modify only the p th and q th rows or columns of a matrix M if it is applied from left or right, respectively:
(
R
p
q
M
)
m
,
n
=
{
M
m
,
n
m
≠
p
,
q
1
2
(
M
p
,
n
e
−
i
θ
−
M
q
,
n
e
+
i
θ
)
m
=
p
1
2
(
M
p
,
n
e
−
i
θ
+
M
q
,
n
e
+
i
θ
)
m
=
q
(
M
R
p
q
†
)
m
,
n
=
{
M
m
,
n
n
≠
p
,
q
1
2
(
M
m
,
p
e
+
i
θ
−
M
m
,
q
e
−
i
θ
)
n
=
p
1
2
(
M
m
,
p
e
+
i
θ
+
M
m
,
q
e
−
i
θ
)
n
=
q
{\displaystyle {\begin{aligned}(R_{pq}M)_{m,n}&={\begin{cases}M_{m,n}&m\neq p,q\\[8pt]{\frac {1}{\sqrt {2}}}(M_{p,n}e^{-i\theta }-M_{q,n}e^{+i\theta })&m=p\\[8pt]{\frac {1}{\sqrt {2}}}(M_{p,n}e^{-i\theta }+M_{q,n}e^{+i\theta })&m=q\end{cases}}\\[8pt](MR_{pq}^{\dagger })_{m,n}&={\begin{cases}M_{m,n}&n\neq p,q\\{\frac {1}{\sqrt {2}}}(M_{m,p}e^{+i\theta }-M_{m,q}e^{-i\theta })&n=p\\[8pt]{\frac {1}{\sqrt {2}}}(M_{m,p}e^{+i\theta }+M_{m,q}e^{-i\theta })&n=q\end{cases}}\end{aligned}}}
A Hermitian matrix , H is defined by the conjugate transpose symmetry property:
H
†
=
H
⇔
H
i
,
j
=
H
j
,
i
∗
{\displaystyle H^{\dagger }=H\ \Leftrightarrow \ H_{i,j}=H_{j,i}^{*}}
By definition, the complex conjugate of a complex unitary rotation matrix, R is its inverse and also a complex unitary rotation matrix:
R
p
q
†
=
R
p
q
−
1
⇒
R
p
q
†
†
=
R
p
q
−
1
†
=
R
p
q
−
1
−
1
=
R
p
q
.
{\displaystyle {\begin{aligned}R_{pq}^{\dagger }&=R_{pq}^{-1}\\[6pt]\Rightarrow \ R_{pq}^{\dagger ^{\dagger }}&=R_{pq}^{-1^{\dagger }}=R_{pq}^{-1^{-1}}=R_{pq}.\end{aligned}}}
Hence, the complex equivalent Givens transformation
T
{\displaystyle T}
of a Hermitian matrix H is also a Hermitian matrix similar to H :
T
≡
R
p
q
H
R
p
q
†
,
T
†
=
(
R
p
q
H
R
p
q
†
)
†
=
R
p
q
†
†
H
†
R
p
q
†
=
R
p
q
H
R
p
q
†
=
T
{\displaystyle {\begin{aligned}T&\equiv R_{pq}HR_{pq}^{\dagger },&&\\[6pt]T^{\dagger }&=(R_{pq}HR_{pq}^{\dagger })^{\dagger }=R_{pq}^{\dagger ^{\dagger }}H^{\dagger }R_{pq}^{\dagger }=R_{pq}HR_{pq}^{\dagger }=T\end{aligned}}}
The elements of T can be calculated by the relations above. The important elements for the Jacobi iteration are the following four:
T
p
,
p
=
H
p
,
p
+
H
q
,
q
2
−
R
e
{
H
p
,
q
e
−
2
i
θ
}
,
T
p
,
q
=
H
p
,
p
−
H
q
,
q
2
+
i
I
m
{
H
p
,
q
e
−
2
i
θ
}
,
T
q
,
p
=
H
p
,
p
−
H
q
,
q
2
−
i
I
m
{
H
p
,
q
e
−
2
i
θ
}
,
T
q
,
q
=
H
p
,
p
+
H
q
,
q
2
+
R
e
{
H
p
,
q
e
−
2
i
θ
}
.
{\displaystyle {\begin{array}{clrcl}T_{p,p}&=&&{\frac {H_{p,p}+H_{q,q}}{2}}&-\ \ \ \mathrm {Re} \{H_{p,q}e^{-2i\theta }\},\\[8pt]T_{p,q}&=&&{\frac {H_{p,p}-H_{q,q}}{2}}&+\ i\ \mathrm {Im} \{H_{p,q}e^{-2i\theta }\},\\[8pt]T_{q,p}&=&&{\frac {H_{p,p}-H_{q,q}}{2}}&-\ i\ \mathrm {Im} \{H_{p,q}e^{-2i\theta }\},\\[8pt]T_{q,q}&=&&{\frac {H_{p,p}+H_{q,q}}{2}}&+\ \ \ \mathrm {Re} \{H_{p,q}e^{-2i\theta }\}.\end{array}}}
Each Jacobi iteration with R J pq generates a transformed matrix, T J , with T J p ,q = 0. The rotation matrix R J p ,q is defined as a product of two complex unitary rotation matrices.
R
p
q
J
≡
R
p
q
(
θ
2
)
R
p
q
(
θ
1
)
,
with
θ
1
≡
2
ϕ
1
−
π
4
and
θ
2
≡
ϕ
2
2
,
{\displaystyle {\begin{aligned}R_{pq}^{J}&\equiv R_{pq}(\theta _{2})\,R_{pq}(\theta _{1}),{\text{ with}}\\[8pt]\theta _{1}&\equiv {\frac {2\phi _{1}-\pi }{4}}{\text{ and }}\theta _{2}\equiv {\frac {\phi _{2}}{2}},\end{aligned}}}
where the phase terms,
ϕ
1
{\displaystyle \phi _{1}}
and
ϕ
2
{\displaystyle \phi _{2}}
are given by:
tan
ϕ
1
=
I
m
{
H
p
,
q
}
R
e
{
H
p
,
q
}
,
tan
ϕ
2
=
2
|
H
p
,
q
|
H
p
,
p
−
H
q
,
q
.
{\displaystyle {\begin{aligned}\tan \phi _{1}&={\frac {\mathrm {Im} \{H_{p,q}\}}{\mathrm {Re} \{H_{p,q}\}}},\\[8pt]\tan \phi _{2}&={\frac {2|H_{p,q}|}{H_{p,p}-H_{q,q}}}.\end{aligned}}}
Finally, it is important to note that the product of two complex rotation matrices for given angles θ 1 and θ 2 cannot be transformed into a single complex unitary rotation matrix R pq (θ ). The product of two complex rotation matrices are given by:
[
R
p
q
(
θ
2
)
R
p
q
(
θ
1
)
]
m
,
n
=
{
δ
m
,
n
m
,
n
≠
p
,
q
,
−
i
e
−
i
θ
1
sin
θ
2
m
=
p
and
n
=
p
,
−
e
+
i
θ
1
cos
θ
2
m
=
p
and
n
=
q
,
e
−
i
θ
1
cos
θ
2
m
=
q
and
n
=
p
,
+
i
e
+
i
θ
1
sin
θ
2
m
=
q
and
n
=
q
.
{\displaystyle {\begin{aligned}\left[R_{pq}(\theta _{2})\,R_{pq}(\theta _{1})\right]_{m,n}={\begin{cases}\ \ \ \ \delta _{m,n}&m,n\neq p,q,\\[8pt]-ie^{-i\theta _{1}}\,\sin {\theta _{2}}&m=p{\text{ and }}n=p,\\[8pt]-e^{+i\theta _{1}}\,\cos {\theta _{2}}&m=p{\text{ and }}n=q,\\[8pt]\ \ \ \ e^{-i\theta _{1}}\,\cos {\theta _{2}}&m=q{\text{ and }}n=p,\\[8pt]+ie^{+i\theta _{1}}\,\sin {\theta _{2}}&m=q{\text{ and }}n=q.\end{cases}}\end{aligned}}}
Strang, G. (1993), Introduction to Linear Algebra , MA: Wellesley Cambridge Press .
Key concepts Problems Hardware Software