Jump to content

Heine–Stieltjes polynomials

From Wikipedia, the free encyclopedia
(Redirected from Van Vleck polynomials)

In mathematics, the Heine–Stieltjes polynomials or Stieltjes polynomials, introduced by T. J. Stieltjes (1885), are polynomial solutions of a second-order Fuchsian equation, a differential equation all of whose singularities are regular. The Fuchsian equation has the form

for some polynomial V(z) of degree at most N − 2, and if this has a polynomial solution S then V is called a Van Vleck polynomial (after Edward Burr Van Vleck) and S is called a Heine–Stieltjes polynomial.

Heun polynomials are the special cases of Stieltjes polynomials when the differential equation has four singular points.

References[edit]

  • Marden, Morris (1931), "On Stieltjes Polynomials", Transactions of the American Mathematical Society, 33 (4), Providence, R.I.: American Mathematical Society: 934–944, doi:10.2307/1989516, ISSN 0002-9947, JSTOR 1989516
  • Sleeman, B. D.; Kuznetzov, V. B. (2010), "Stieltjes Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Stieltjes, T. J. (1885), "Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lamé", Acta Mathematica, 6 (1): 321–326, doi:10.1007/BF02400421