Construction of an irreducible Markov chain in the Ising model
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
|
Construction of an Irreducible Markov Chain in the Ising model is a mathematical method to prove results.
The Ising model, a mathematical model in statistical mechanics, is utilized to study magnetic phase transitions and is a fundamental model of interacting systems.[1] Constructing an irreducible Markov chain within the Ising model is essential for overcoming computational challenges encountered when employing Markov chain Monte Carlo (MCMC) methods to achieve exact goodness-of-fit tests for finite Ising models.
Markov bases
[edit]In the context of the Ising model, a Markov basis is a set of integer vectors that enables the construction of an irreducible Markov chain. Every integer vector can be uniquely decomposed as , where and are non-negative vectors. A Markov basis satisfies the following conditions:
(i) For all , there must be and .
(ii) For any and any , there always exist satisfy:
and
for l = 1,...,k.
The element of is moved. An aperiodic, reversible, and irreducible Markov Chain can then be obtained using Metropolis–Hastings algorithm.
Persi Diaconis and Bernd Sturmfels showed that (1) a Markov basis can be defined algebraically as an Ising model[2] and (2) any generating set for the ideal , is a Markov basis for the Ising model.[3]
Construction of an Irreducible Markov Chain
[edit]To obtain uniform samples from and avoid inaccurate p-values, it is necessary to construct an irreducible Markov chain without modifying the algorithm proposed by Diaconis and Sturmfels.
A simple swap of the form , where is the canonical basis vector, changes the states of two lattice points in y. The set Z denotes the collection of simple swaps. Two configurations are -connected by Z if there exists a path between y and y′ consisting of simple swaps .
The algorithm proceeds as follows:
with
for
The algorithm can now be described as:
(i) Start with the Markov chain in a configuration
(ii) Select at random and let .
(iii) Accept if ; otherwise remain in y.
Although the resulting Markov Chain possibly cannot leave the initial state, the problem does not arise for a 1-dimensional Ising model. In higher dimensions, this problem can be overcomed by using the Metropolis-Hastings algorithm in the smallest expanded sample space .[4]
Irreducibility in the 1-Dimensional Ising Model
[edit]The proof of irreducibility in the 1-dimensional Ising model requires two lemmas.
Lemma 1: The max-singleton configuration of for the 1-dimension Ising model is unique (up to location of its connected components) and consists of singletons and one connected component of size .
Lemma 2: For and , let denote the unique max-singleton configuration. There exists a sequence such that:
and
for
Since is the smallest expanded sample space which contains , any two configurations in can be connected by simple swaps Z without leaving . This is proved by Lemma 2, so one can achieve the irreducibility of a Markov chain based on simple swaps for the 1-dimension Ising model.[5]
It is also possible to get the same conclusion for a dimension 2 or higher Ising model using the same steps outlined above.
References
[edit]- ^ Kannan, Ravi; Mahoney, Michael W.; Montenegro, Ravi (2003). "Rapid mixing of several Markov chains for a hard-core model". In Ibaraki, Toshihide; Katoh, Naoki; Ono, Hirotaka (eds.). Algorithms and Computation, 14th International Symposium, ISAAC 2003, Kyoto, Japan, December 15-17, 2003, Proceedings. Lecture Notes in Computer Science. Vol. 2906. Springer. pp. 663–675. doi:10.1007/978-3-540-24587-2_68.
- ^ Diaconis, Persi; Sturmfels, Bernd (February 1998). "Algebraic algorithms for sampling from conditional distributions". The Annals of Statistics. 26 (1): 363–397. CiteSeerX 10.1.1.28.6847. doi:10.1214/aos/1030563990. ISSN 0090-5364. Retrieved 2023-11-16.
- ^ Robert, Christian P.; Casella, George (2004). "Monte Carlo Statistical Methods". Springer Texts in Statistics. doi:10.1007/978-1-4757-4145-2. ISSN 1431-875X.
- ^ Levin, David; Peres, Yuval; Wilmer, Elizabeth (2008-12-09). Markov Chains and Mixing Times. Providence, Rhode Island: American Mathematical Society. ISBN 978-0-8218-4739-8.
- ^ PESKUN, P. H. (1973). "Optimum Monte-Carlo sampling using Markov chains". Biometrika. 60 (3): 607–612. doi:10.1093/biomet/60.3.607. ISSN 0006-3444.