Type of magic square
A prime reciprocal magic square is a magic square using the decimal digits of the reciprocal of a prime number .
In decimal , unit fractions
1
2
{\displaystyle {\tfrac {1}{2}}}
and
1
5
{\displaystyle {\tfrac {1}{5}}}
have no repeating decimal , while
1
3
{\displaystyle {\tfrac {1}{3}}}
repeats
0.3333
…
{\displaystyle 0.3333\dots }
indefinitely. The remainder of
1
7
{\displaystyle {\tfrac {1}{7}}}
, on the other hand, repeats over six digits as,
0.
1
42857
1
42857
1
…
{\displaystyle 0.{\mathbf {1}}42857{\mathbf {1}}42857{\mathbf {1}}\dots }
Consequently, multiples of one-seventh exhibit cyclic permutations of these six digits:[1]
1
/
7
=
0.142857
…
2
/
7
=
0.285714
…
3
/
7
=
0.428571
…
4
/
7
=
0.571428
…
5
/
7
=
0.714285
…
6
/
7
=
0.857142
…
{\displaystyle {\begin{aligned}1/7&=0.142857\dots \\2/7&=0.285714\dots \\3/7&=0.428571\dots \\4/7&=0.571428\dots \\5/7&=0.714285\dots \\6/7&=0.857142\dots \end{aligned}}}
If the digits are laid out as a square , each row and column sums to
1
+
4
+
2
+
8
+
5
+
7
=
27.
{\displaystyle 1+4+2+8+5+7=27.}
This yields the smallest base-10 non-normal, prime reciprocal magic square
1
{\displaystyle 1}
4
{\displaystyle 4}
2
{\displaystyle 2}
8
{\displaystyle 8}
5
{\displaystyle 5}
7
{\displaystyle 7}
2
{\displaystyle 2}
8
{\displaystyle 8}
5
{\displaystyle 5}
7
{\displaystyle 7}
1
{\displaystyle 1}
4
{\displaystyle 4}
4
{\displaystyle 4}
2
{\displaystyle 2}
8
{\displaystyle 8}
5
{\displaystyle 5}
7
{\displaystyle 7}
1
{\displaystyle 1}
5
{\displaystyle 5}
7
{\displaystyle 7}
1
{\displaystyle 1}
4
{\displaystyle 4}
2
{\displaystyle 2}
8
{\displaystyle 8}
7
{\displaystyle 7}
1
{\displaystyle 1}
4
{\displaystyle 4}
2
{\displaystyle 2}
8
{\displaystyle 8}
5
{\displaystyle 5}
8
{\displaystyle 8}
5
{\displaystyle 5}
7
{\displaystyle 7}
1
{\displaystyle 1}
4
{\displaystyle 4}
2
{\displaystyle 2}
In contrast with its rows and columns, the diagonals of this square do not sum to 27; however, their mean is 27, as one diagonal adds to 23 while the other adds to 31.
All prime reciprocals in any base with a
p
−
1
{\displaystyle p-1}
period will generate magic squares where all rows and columns produce a magic constant , and only a select few will be full , such that their diagonals, rows and columns collectively yield equal sums.
In a full, or otherwise prime reciprocal magic square with
p
−
1
{\displaystyle p-1}
period, the even number of
k
{\displaystyle k}
−th rows in the square are arranged by multiples of
1
/
p
{\displaystyle 1/p}
— not necessarily successively — where a magic constant can be obtained.
For instance, an even repeating cycle from an odd, prime reciprocal of
p
{\displaystyle p}
that is divided into
n
{\displaystyle n}
−digit strings creates pairs of complementary sequences of digits that yield strings of nines (9) when added together:
1
/
7
=
0.142
857
…
+
0.857
142
…
=
6
/
7
−
−
−
−
−
−
−
−
−
−
−
−
0.999
999
…
1
/
13
=
0.076
923
076
923
…
+
0.923
076
923
076
…
=
12
/
13
−
−
−
−
−
−
−
−
−
−
−
−
0.999
999
999
999
…
1
/
19
=
0.052631578
947368421
…
+
0.947368421
052631578
…
=
18
/
19
−
−
−
−
−
−
−
−
−
−
−
−
0.999999999
999999999
…
{\displaystyle {\begin{aligned}1/7=&{\text{ }}0.142\;857\dots \\+&{\text{ }}0.857\;142\ldots =6/7\\&------------\\&{\text{ }}0.999\;999\ldots \\\\1/13=&{\text{ }}0.076\;923\;076\;923\dots \\+&{\text{ }}0.923\;076\;923\;076\ldots =12/13\\&------------\\&{\text{ }}0.999\;999\;999\;999\ldots \\\\1/19=&{\text{ }}0.052631578\;947368421\dots \\+&{\text{ }}0.947368421\;052631578\ldots =18/19\\&------------\\&{\text{ }}0.999999999\;999999999\dots \\\end{aligned}}}
This is a result of Midy's theorem .[2] [3] These complementary sequences are generated between multiples of prime reciprocals that add to 1.
More specifically, a factor
n
{\displaystyle n}
in the numerator of the reciprocal of a prime number
p
{\displaystyle p}
will shift the decimal places of its decimal expansion accordingly,
1
/
23
=
0.04347826
08695652
173913
…
2
/
23
=
0.08695652
17391304
347826
…
4
/
23
=
0.17391304
34782608
695652
…
8
/
23
=
0.34782608
69565217
391304
…
16
/
23
=
0.69565217
39130434
782608
…
{\displaystyle {\begin{aligned}1/23&=0.04347826\;08695652\;173913\ldots \\2/23&=0.08695652\;17391304\;347826\ldots \\4/23&=0.17391304\;34782608\;695652\ldots \\8/23&=0.34782608\;69565217\;391304\ldots \\16/23&=0.69565217\;39130434\;782608\ldots \\\end{aligned}}}
In this case, a factor of 2 moves the repeating decimal of
1
23
{\displaystyle {\tfrac {1}{23}}}
by eight places.
A uniform solution of a prime reciprocal magic square, whether full or not, will hold rows with successive multiples of
1
/
p
{\displaystyle 1/p}
. Other magic squares can be constructed whose rows do not represent consecutive multiples of
1
/
p
{\displaystyle 1/p}
, which nonetheless generate a magic sum.
Magic squares based on reciprocals of primes
p
{\displaystyle p}
in bases
b
{\displaystyle b}
with periods
p
−
1
{\displaystyle p-1}
have magic sums equal to,[citation needed ]
M
=
(
b
−
1
)
×
p
−
1
2
.
{\displaystyle M=(b-1)\times {\frac {p-1}{2}}.}
The table below lists some prime numbers that generate prime-reciprocal magic squares in given bases.
Prime
Base
Magic sum
19
10
81
53
12
286
59
2
29
67
2
33
83
2
41
89
19
792
211
2
105
223
3
222
307
5
612
383
10
1,719
397
5
792
487
6
1,215
593
3
592
631
87
27,090
787
13
4,716
811
3
810
1,033
11
5,160
1,307
5
2,612
1,499
11
7,490
1,877
19
16,884
2,011
26
25,125
2,027
2
1,013
The
1
19
{\displaystyle {\mathbf {\tfrac {1}{19}}}}
magic square with maximum period 18 contains a row-and-column total of 81, that is also obtained by both diagonals. This makes it the first full, non-normal base-10 prime reciprocal magic square whose multiples fit inside respective
k
{\displaystyle k}
−th rows:[4] [5]
1
/
19
=
0.
0
5
2
6
3
1
5
7
8
9
4
7
3
6
8
4
2
1
…
2
/
19
=
0.1
0
5
2
6
3
1
5
7
8
9
4
7
3
6
8
4
2
…
3
/
19
=
0.1
5
7
8
9
4
7
3
6
8
4
2
1
0
5
2
6
3
…
4
/
19
=
0.2
1
0
5
2
6
3
1
5
7
8
9
4
7
3
6
8
4
…
5
/
19
=
0.2
6
3
1
5
7
8
9
4
7
3
6
8
4
2
1
0
5
…
6
/
19
=
0.3
1
5
7
8
9
4
7
3
6
8
4
2
1
0
5
2
6
…
7
/
19
=
0.3
6
8
4
2
1
0
5
2
6
3
1
5
7
8
9
4
7
…
8
/
19
=
0.4
2
1
0
5
2
6
3
1
5
7
8
9
4
7
3
6
8
…
9
/
19
=
0.4
7
3
6
8
4
2
1
0
5
2
6
3
1
5
7
8
9
…
10
/
19
=
0.5
2
6
3
1
5
7
8
9
4
7
3
6
8
4
2
1
0
…
11
/
19
=
0.5
7
8
9
4
7
3
6
8
4
2
1
0
5
2
6
3
1
…
12
/
19
=
0.6
3
1
5
7
8
9
4
7
3
6
8
4
2
1
0
5
2
…
13
/
19
=
0.6
8
4
2
1
0
5
2
6
3
1
5
7
8
9
4
7
3
…
14
/
19
=
0.7
3
6
8
4
2
1
0
5
2
6
3
1
5
7
8
9
4
…
15
/
19
=
0.7
8
9
4
7
3
6
8
4
2
1
0
5
2
6
3
1
5
…
16
/
19
=
0.8
4
2
1
0
5
2
6
3
1
5
7
8
9
4
7
3
6
…
17
/
19
=
0.8
9
4
7
3
6
8
4
2
1
0
5
2
6
3
1
5
7
…
18
/
19
=
0.
9
4
7
3
6
8
4
2
1
0
5
2
6
3
1
5
7
8
…
{\displaystyle {\begin{aligned}1/19&=0.{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}{\color {red}1}\dots \\2/19&=0.1{\text{ }}{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}{\color {red}4}{\text{ }}2\dots \\3/19&=0.1{\text{ }}5{\text{ }}{\color {red}7}{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}{\color {red}2}{\text{ }}6{\text{ }}3\dots \\4/19&=0.2{\text{ }}1{\text{ }}0{\text{ }}{\color {red}5}{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}{\color {red}3}{\text{ }}6{\text{ }}8{\text{ }}4\dots \\5/19&=0.2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}{\color {red}5}{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}{\color {red}4}{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5\dots \\6/19&=0.3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}{\color {red}2}{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6\dots \\7/19&=0.3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}{\color {red}1}{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7\dots \\8/19&=0.4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}{\color {red}3}{\text{ }}1{\text{ }}5{\text{ }}{\color {red}7}{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8\dots \\9/19&=0.4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}{\color {red}0}{\text{ }}{\color {red}5}{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9\dots \\10/19&=0.5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}{\color {red}9}{\text{ }}{\color {red}4}{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0\dots \\11/19&=0.5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}{\color {red}6}{\text{ }}8{\text{ }}4{\text{ }}{\color {red}2}{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1\dots \\12/19&=0.6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}{\color {red}8}{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2\dots \\13/19&=0.6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}{\color {red}7}{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3\dots \\14/19&=0.7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}{\color {red}4}{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}{\color {red}5}{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4\dots \\15/19&=0.7{\text{ }}8{\text{ }}9{\text{ }}{\color {red}4}{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}{\color {red}6}{\text{ }}3{\text{ }}1{\text{ }}5\dots \\16/19&=0.8{\text{ }}4{\text{ }}{\color {red}2}{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}{\color {red}7}{\text{ }}3{\text{ }}6\dots \\17/19&=0.8{\text{ }}{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}{\color {red}5}{\text{ }}7\dots \\18/19&=0.{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}{\color {red}8}\dots \\\end{aligned}}}
The first few prime numbers in decimal whose reciprocals can be used to produce a non-normal, full prime reciprocal magic square of this type are[6]
{19, 383, 32327, 34061, 45341, 61967, 65699, 117541, 158771, 405817, ...} (sequence A072359 in the OEIS ).
The smallest prime number to yield such magic square in binary is 59 (1110112 ), while in ternary it is 223 (220213 ); these are listed at A096339 , and A096660 .
A
1
17
{\displaystyle {\tfrac {1}{17}}}
prime reciprocal magic square with maximum period of 16 and magic constant of 72 can be constructed where its rows represent non-consecutive multiples of one-seventeenth:[7] [8]
1
/
17
=
0.
0
5
8
8
2
3
5
2
9
4
1
1
7
6
4
7
…
5
/
17
=
0.2
9
4
1
1
7
6
4
7
0
5
8
8
2
3
5
…
8
/
17
=
0.4
7
0
5
8
8
2
3
5
2
9
4
1
1
7
6
…
6
/
17
=
0.3
5
2
9
4
1
1
7
6
4
7
0
5
8
8
2
…
13
/
17
=
0.7
6
4
7
0
5
8
8
2
3
5
2
9
4
1
1
…
14
/
17
=
0.8
2
3
5
2
9
4
1
1
7
6
4
7
0
5
8
…
2
/
17
=
0.1
1
7
6
4
7
0
5
8
8
2
3
5
2
9
4
…
10
/
17
=
0.5
8
8
2
3
5
2
9
4
1
1
7
6
4
7
0
…
16
/
17
=
0.9
4
1
1
7
6
4
7
0
5
8
8
2
3
5
2
…
12
/
17
=
0.7
0
5
8
8
2
3
5
2
9
4
1
1
7
6
4
…
9
/
17
=
0.5
2
9
4
1
1
7
6
4
7
0
5
8
8
2
3
…
11
/
17
=
0.6
4
7
0
5
8
8
2
3
5
2
9
4
1
1
7
…
4
/
17
=
0.2
3
5
2
9
4
1
1
7
6
4
7
0
5
8
8
…
3
/
17
=
0.1
7
6
4
7
0
5
8
8
2
3
5
2
9
4
1
…
15
/
17
=
0.8
8
2
3
5
2
9
4
1
1
7
6
4
7
0
5
…
7
/
17
=
0.
4
1
1
7
6
4
7
0
5
8
8
2
3
5
2
9
…
{\displaystyle {\begin{aligned}1/17&=0.{\color {blue}0}{\text{ }}5\;8\;8\;2\;3\;5\;2\;9\;4\;1\;1\;7\;6\;4\;{\color {blue}7}\dots \\5/17&=0.2\;{\color {blue}9}\;4\;1\;1\;7\;6\;4\;7\;0\;5\;8\;8\;2\;{\color {blue}3}\;5\dots \\8/17&=0.4\;7\;{\color {blue}0}\;5\;8\;8\;2\;3\;5\;2\;9\;4\;1\;{\color {blue}1}\;7\;6\dots \\6/17&=0.3\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\;6\;4\;7\;0\;{\color {blue}5}\;8\;8\;2\dots \\13/17&=0.7\;6\;4\;7\;{\color {blue}0}\;5\;8\;8\;2\;3\;5\;{\color {blue}2}\;9\;4\;1\;1\dots \\14/17&=0.8\;2\;3\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\;{\color {blue}6}\;4\;7\;0\;5\;8\dots \\2/17&=0.1\;1\;7\;6\;4\;7\;{\color {blue}0}\;5\;8\;{\color {blue}8}\;2\;3\;5\;2\;9\;4\dots \\10/17&=0.5\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\;{\color {blue}4}\;1\;1\;7\;6\;4\;7\;0\dots \\16/17&=0.9\;4\;1\;1\;7\;6\;4\;{\color {blue}7}\;{\color {blue}0}\;5\;8\;8\;2\;3\;5\;2\dots \\12/17&=0.7\;0\;5\;8\;8\;2\;{\color {blue}3}\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\;6\;4\dots \\9/17&=0.5\;2\;9\;4\;1\;{\color {blue}1}\;7\;6\;4\;7\;{\color {blue}0}\;5\;8\;8\;2\;3\dots \\11/17&=0.6\;4\;7\;0\;{\color {blue}5}\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\dots \\4/17&=0.2\;3\;5\;{\color {blue}2}\;9\;4\;1\;1\;7\;6\;4\;7\;{\color {blue}0}\;5\;8\;8\dots \\3/17&=0.1\;7\;{\color {blue}6}\;4\;7\;0\;5\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\;4\;1\dots \\15/17&=0.8\;{\color {blue}8}\;2\;3\;5\;2\;9\;4\;1\;1\;7\;6\;4\;7\;{\color {blue}0}\;5\dots \\7/17&=0.{\color {blue}4}\;1\;1\;7\;6\;4\;7\;0\;5\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\dots \\\end{aligned}}}
As such, this full magic square is the first of its kind in decimal that does not admit a uniform solution where consecutive multiples of
1
/
p
{\displaystyle 1/p}
fit in respective
k
{\displaystyle k}
−th rows.
^ Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers . London: Penguin Books . pp. 171–174. ISBN 0-14-008029-5 . OCLC 39262447 . S2CID 118329153 .
^ Rademacher, Hans ; Toeplitz, Otto (1957). The Enjoyment of Mathematics: Selections from Mathematics for the Amateur (2nd ed.). Princeton, NJ: Princeton University Press . pp. 158–160. ISBN 9780486262420 . MR 0081844 . OCLC 20827693 . Zbl 0078.00114 .
^ Leavitt, William G. (1967). "A Theorem on Repeating Decimals" . The American Mathematical Monthly . 74 (6). Washington, D.C.: Mathematical Association of America : 669–673. doi :10.2307/2314251 . JSTOR 2314251 . MR 0211949 . Zbl 0153.06503 .
^ Andrews, William Symes (1917). Magic Squares and Cubes (PDF) . Chicago, IL: Open Court Publishing Company . pp. 176, 177. ISBN 9780486206585 . MR 0114763 . OCLC 1136401 . Zbl 1003.05500 .
^ Sloane, N. J. A. (ed.). "Sequence A021023 (Decimal expansion of 1/19.)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2023-11-21 .
^ Singleton, Colin R.J., ed. (1999). "Solutions to Problems and Conjectures" . Journal of Recreational Mathematics . 30 (2). Amityville, NY: Baywood Publishing & Co.: 158–160.
"Fourteen primes less than 1000000 possess this required property [in decimal]".
Solution to problem 2420, "Only 19?" by M. J. Zerger.
^ Subramani, K. (2020). "On two interesting properties of primes, p, with reciprocals in base 10 having maximum period p – 1" (PDF) . J. of Math. Sci. & Comp. Math . 1 (2). Auburn, WA: S.M.A.R.T.: 198–200. doi :10.15864/jmscm.1204 . eISSN 2644-3368 . S2CID 235037714 .
^ Sloane, N. J. A. (ed.). "Sequence A007450 (Decimal expansion of 1/17.)" . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2023-11-24 .
hide Types Related shapes Higher dimensional shapes Classification Related concepts