Brun sieve
In the field of number theory, the Brun sieve (also called Brun's pure sieve) is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Viggo Brun in 1915 and later generalized to the fundamental lemma of sieve theory by others.
Description[edit]
In terms of sieve theory the Brun sieve is of combinatorial type; that is, it derives from a careful use of the inclusion–exclusion principle.
Let be a finite set of positive integers. Let be some set of prime numbers. For each prime in , let denote the set of elements of that are divisible by . This notation can be extended to other integers that are products of distinct primes in . In this case, define to be the intersection of the sets for the prime factors of . Finally, define to be itself. Let be an arbitrary positive real number. The object of the sieve is to estimate:
where the notation denotes the cardinality of a set , which in this case is just its number of elements. Suppose in addition that may be estimated by
Brun's pure sieve[edit]
This formulation is from Cojocaru & Murty, Theorem 6.1.2. With the notation as above, suppose that
- for any squarefree composed of primes in ;
- for all in ;
- There exist constants such that, for any positive real number ,
Then
where is the cardinal of , is any positive integer and the invokes big O notation. In particular, letting denote the maximum element in , if for a suitably small , then
Applications[edit]
- Brun's theorem: the sum of the reciprocals of the twin primes converges;
- Schnirelmann's theorem: every even number is a sum of at most primes (where can be taken to be 6);
- There are infinitely many pairs of integers differing by 2, where each of the member of the pair is the product of at most 9 primes;
- Every even number is the sum of two numbers each of which is the product of at most 9 primes.
The last two results were superseded by Chen's theorem, and the second by Goldbach's weak conjecture ().
References[edit]
- Viggo Brun (1915). "Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare". Archiv for Mathematik og Naturvidenskab. B34 (8).
- Viggo Brun (1919). "La série où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie". Bulletin des Sciences Mathématiques. 43: 100–104, 124–128. JFM 47.0163.01.
- Alina Carmen Cojocaru; M. Ram Murty (2005). An introduction to sieve methods and their applications. London Mathematical Society Student Texts. Vol. 66. Cambridge University Press. pp. 80–112. ISBN 0-521-61275-6.
- George Greaves (2001). Sieves in number theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3. Folge). Vol. 43. Springer-Verlag. pp. 71–101. ISBN 3-540-41647-1.
- Heini Halberstam; H.E. Richert (1974). Sieve Methods. Academic Press. ISBN 0-12-318250-6.
- Christopher Hooley (1976). Applications of sieve methods to the theory of numbers. Cambridge University Press. ISBN 0-521-20915-3..