In mathematics , more specifically, in convex geometry , the mixed volume is a way to associate a non-negative number to a tuple of convex bodies in
R
n
{\displaystyle \mathbb {R} ^{n}}
. This number depends on the size and shape of the bodies, and their relative orientation to each other.
Let
K
1
,
K
2
,
…
,
K
r
{\displaystyle K_{1},K_{2},\dots ,K_{r}}
be convex bodies in
R
n
{\displaystyle \mathbb {R} ^{n}}
and consider the function
f
(
λ
1
,
…
,
λ
r
)
=
V
o
l
n
(
λ
1
K
1
+
⋯
+
λ
r
K
r
)
,
λ
i
≥
0
,
{\displaystyle f(\lambda _{1},\ldots ,\lambda _{r})=\mathrm {Vol} _{n}(\lambda _{1}K_{1}+\cdots +\lambda _{r}K_{r}),\qquad \lambda _{i}\geq 0,}
where
Vol
n
{\displaystyle {\text{Vol}}_{n}}
stands for the
n
{\displaystyle n}
-dimensional volume, and its argument is the Minkowski sum of the scaled convex bodies
K
i
{\displaystyle K_{i}}
. One can show that
f
{\displaystyle f}
is a homogeneous polynomial of degree
n
{\displaystyle n}
, so can be written as
f
(
λ
1
,
…
,
λ
r
)
=
∑
j
1
,
…
,
j
n
=
1
r
V
(
K
j
1
,
…
,
K
j
n
)
λ
j
1
⋯
λ
j
n
,
{\displaystyle f(\lambda _{1},\ldots ,\lambda _{r})=\sum _{j_{1},\ldots ,j_{n}=1}^{r}V(K_{j_{1}},\ldots ,K_{j_{n}})\lambda _{j_{1}}\cdots \lambda _{j_{n}},}
where the functions
V
{\displaystyle V}
are symmetric. For a particular index function
j
∈
{
1
,
…
,
r
}
n
{\displaystyle j\in \{1,\ldots ,r\}^{n}}
, the coefficient
V
(
K
j
1
,
…
,
K
j
n
)
{\displaystyle V(K_{j_{1}},\dots ,K_{j_{n}})}
is called the mixed volume of
K
j
1
,
…
,
K
j
n
{\displaystyle K_{j_{1}},\dots ,K_{j_{n}}}
.
The mixed volume is uniquely determined by the following three properties:
V
(
K
,
…
,
K
)
=
Vol
n
(
K
)
{\displaystyle V(K,\dots ,K)={\text{Vol}}_{n}(K)}
;
V
{\displaystyle V}
is symmetric in its arguments;
V
{\displaystyle V}
is multilinear:
V
(
λ
K
+
λ
′
K
′
,
K
2
,
…
,
K
n
)
=
λ
V
(
K
,
K
2
,
…
,
K
n
)
+
λ
′
V
(
K
′
,
K
2
,
…
,
K
n
)
{\displaystyle V(\lambda K+\lambda 'K',K_{2},\dots ,K_{n})=\lambda V(K,K_{2},\dots ,K_{n})+\lambda 'V(K',K_{2},\dots ,K_{n})}
for
λ
,
λ
′
≥
0
{\displaystyle \lambda ,\lambda '\geq 0}
.
The mixed volume is non-negative and monotonically increasing in each variable:
V
(
K
1
,
K
2
,
…
,
K
n
)
≤
V
(
K
1
′
,
K
2
,
…
,
K
n
)
{\displaystyle V(K_{1},K_{2},\ldots ,K_{n})\leq V(K_{1}',K_{2},\ldots ,K_{n})}
for
K
1
⊆
K
1
′
{\displaystyle K_{1}\subseteq K_{1}'}
.
The Alexandrov–Fenchel inequality, discovered by Aleksandr Danilovich Aleksandrov and Werner Fenchel :
V
(
K
1
,
K
2
,
K
3
,
…
,
K
n
)
≥
V
(
K
1
,
K
1
,
K
3
,
…
,
K
n
)
V
(
K
2
,
K
2
,
K
3
,
…
,
K
n
)
.
{\displaystyle V(K_{1},K_{2},K_{3},\ldots ,K_{n})\geq {\sqrt {V(K_{1},K_{1},K_{3},\ldots ,K_{n})V(K_{2},K_{2},K_{3},\ldots ,K_{n})}}.}
Numerous geometric inequalities, such as the Brunn–Minkowski inequality for convex bodies and Minkowski's first inequality , are special cases of the Alexandrov–Fenchel inequality.
Let
K
⊂
R
n
{\displaystyle K\subset \mathbb {R} ^{n}}
be a convex body and let
B
=
B
n
⊂
R
n
{\displaystyle B=B_{n}\subset \mathbb {R} ^{n}}
be the Euclidean ball of unit radius. The mixed volume
W
j
(
K
)
=
V
(
K
,
K
,
…
,
K
⏞
n
−
j
times
,
B
,
B
,
…
,
B
⏞
j
times
)
{\displaystyle W_{j}(K)=V({\overset {n-j{\text{ times}}}{\overbrace {K,K,\ldots ,K} }},{\overset {j{\text{ times}}}{\overbrace {B,B,\ldots ,B} }})}
is called the j -th quermassintegral of
K
{\displaystyle K}
.[1]
The definition of mixed volume yields the Steiner formula (named after Jakob Steiner ):
V
o
l
n
(
K
+
t
B
)
=
∑
j
=
0
n
(
n
j
)
W
j
(
K
)
t
j
.
{\displaystyle \mathrm {Vol} _{n}(K+tB)=\sum _{j=0}^{n}{\binom {n}{j}}W_{j}(K)t^{j}.}
The j -th intrinsic volume of
K
{\displaystyle K}
is a different normalization of the quermassintegral, defined by
V
j
(
K
)
=
(
n
j
)
W
n
−
j
(
K
)
κ
n
−
j
,
{\displaystyle V_{j}(K)={\binom {n}{j}}{\frac {W_{n-j}(K)}{\kappa _{n-j}}},}
or in other words
V
o
l
n
(
K
+
t
B
)
=
∑
j
=
0
n
V
j
(
K
)
V
o
l
n
−
j
(
t
B
n
−
j
)
.
{\displaystyle \mathrm {Vol} _{n}(K+tB)=\sum _{j=0}^{n}V_{j}(K)\,\mathrm {Vol} _{n-j}(tB_{n-j}).}
where
κ
n
−
j
=
Vol
n
−
j
(
B
n
−
j
)
{\displaystyle \kappa _{n-j}={\text{Vol}}_{n-j}(B_{n-j})}
is the volume of the
(
n
−
j
)
{\displaystyle (n-j)}
-dimensional unit ball.
Hadwiger's characterization theorem[ edit ]
Hadwiger's theorem asserts that every valuation on convex bodies in
R
n
{\displaystyle \mathbb {R} ^{n}}
that is continuous and invariant under rigid motions of
R
n
{\displaystyle \mathbb {R} ^{n}}
is a linear combination of the quermassintegrals (or, equivalently, of the intrinsic volumes).[2]
Burago, Yu.D. (2001) [1994], "Mixed-volume theory" , Encyclopedia of Mathematics , EMS Press