Solar eclipse of January 6, 2019
Solar eclipse of January 6, 2019 | |
---|---|
![]() From Nakhodka, Russia | |
Type of eclipse | |
Nature | Partial |
Gamma | 1.1417 |
Magnitude | 0.7145 |
Maximum eclipse | |
Coordinates | 67°24′N 153°36′E / 67.4°N 153.6°E |
Times (UTC) | |
Greatest eclipse | 1:42:38 |
References | |
Saros | 122 (58 of 70) |
Catalog # (SE5000) | 9550 |

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, January 6, 2019,[1] with a magnitude of 0.7145. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in East Asia and the North Pacific.
Visibility
[edit]The maximal phase (71%) of the partial eclipse was recorded in Sakha Republic (Russia).
The eclipse was observed in Japan, the Russian Far East, North and South Korea, eastern China, eastern Mongolia and northwest Alaska.
Gallery
[edit]-
Jinan, China, 00:18 UTC
-
Bohyeonsan, South Korea, 00:47 UTC
-
Aichi Prefecture, Japan, 01:00 UTC
Related eclipses
[edit]Eclipses in 2019
[edit]- A partial solar eclipse on January 6.
- A total lunar eclipse on January 21.
- A total solar eclipse on July 2.
- A partial lunar eclipse on July 16.
- An annular solar eclipse on December 26.
Metonic
[edit]- Preceded by: Solar eclipse of March 20, 2015
- Followed by: Solar eclipse of October 25, 2022
Tzolkinex
[edit]- Preceded by: Solar eclipse of November 25, 2011
- Followed by: Solar eclipse of February 17, 2026
Half-Saros
[edit]- Preceded by: Lunar eclipse of December 31, 2009
- Followed by: Lunar eclipse of January 12, 2028
Tritos
[edit]- Preceded by: Solar eclipse of February 7, 2008
- Followed by: Solar eclipse of December 5, 2029
Solar Saros 122
[edit]- Preceded by: Solar eclipse of December 25, 2000
- Followed by: Solar eclipse of January 16, 2037
Inex
[edit]- Preceded by: Solar eclipse of January 26, 1990
- Followed by: Solar eclipse of December 16, 2047
Triad
[edit]- Preceded by: Solar eclipse of March 7, 1932
- Followed by: Solar eclipse of November 6, 2105
Solar eclipses of 2018–2021
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]
The partial solar eclipses on February 15, 2018 and August 11, 2018 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2018 to 2021 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117![]() Partial in Melbourne, Australia |
July 13, 2018![]() Partial |
−1.35423 | 122![]() Partial in Nakhodka, Russia |
January 6, 2019![]() Partial |
1.14174 | |
127![]() Totality in La Serena, Chile |
July 2, 2019![]() Total |
−0.64656 | 132![]() Annularity in Jaffna, Sri Lanka |
December 26, 2019![]() Annular |
0.41351 | |
137![]() Annularity in Beigang, Yunlin, Taiwan |
June 21, 2020![]() Annular |
0.12090 | 142![]() Totality in Gorbea, Chile |
December 14, 2020![]() Total |
−0.29394 | |
147![]() Partial in Halifax, Canada |
June 10, 2021![]() Annular |
0.91516 | 152![]() From HMS Protector off South Georgia |
December 4, 2021![]() Total |
−0.95261 |
Saros 122
[edit]This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[3]
Series members 46–68 occur between 1801 and 2200: | ||
---|---|---|
46 | 47 | 48 |
![]() August 28, 1802 |
![]() September 7, 1820 |
![]() September 18, 1838 |
49 | 50 | 51 |
![]() September 29, 1856 |
![]() October 10, 1874 |
![]() October 20, 1892 |
52 | 53 | 54 |
![]() November 2, 1910 |
![]() November 12, 1928 |
![]() November 23, 1946 |
55 | 56 | 57 |
![]() December 4, 1964 |
![]() December 15, 1982 |
![]() December 25, 2000 |
58 | 59 | 60 |
![]() January 6, 2019 |
![]() January 16, 2037 |
![]() January 27, 2055 |
61 | 62 | 63 |
![]() February 7, 2073 |
![]() February 18, 2091 |
![]() March 1, 2109 |
64 | 65 | 66 |
![]() March 13, 2127 |
![]() March 23, 2145 |
![]() April 3, 2163 |
67 | 68 | |
![]() April 14, 2181 |
![]() April 25, 2199 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 1, 2011 and October 24, 2098 | ||||
---|---|---|---|---|
May 31–June 1 | March 19–20 | January 5–6 | October 24–25 | August 12–13 |
118 | 120 | 122 | 124 | 126 |
![]() June 1, 2011 |
![]() March 20, 2015 |
![]() January 6, 2019 |
![]() October 25, 2022 |
![]() August 12, 2026 |
128 | 130 | 132 | 134 | 136 |
![]() June 1, 2030 |
![]() March 20, 2034 |
![]() January 5, 2038 |
![]() October 25, 2041 |
![]() August 12, 2045 |
138 | 140 | 142 | 144 | 146 |
![]() May 31, 2049 |
![]() March 20, 2053 |
![]() January 5, 2057 |
![]() October 24, 2060 |
![]() August 12, 2064 |
148 | 150 | 152 | 154 | 156 |
![]() May 31, 2068 |
![]() March 19, 2072 |
![]() January 6, 2076 |
![]() October 24, 2079 |
![]() August 13, 2083 |
158 | 160 | 162 | 164 | |
![]() June 1, 2087 |
![]() October 24, 2098 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1866 and 2200 | ||||
---|---|---|---|---|
![]() March 16, 1866 (Saros 108) |
![]() December 13, 1898 (Saros 111) |
|||
![]() September 12, 1931 (Saros 114) |
![]() August 12, 1942 (Saros 115) |
![]() July 11, 1953 (Saros 116) |
![]() June 10, 1964 (Saros 117) | |
![]() May 11, 1975 (Saros 118) |
![]() April 9, 1986 (Saros 119) |
![]() March 9, 1997 (Saros 120) |
![]() February 7, 2008 (Saros 121) |
![]() January 6, 2019 (Saros 122) |
![]() December 5, 2029 (Saros 123) |
![]() November 4, 2040 (Saros 124) |
![]() October 4, 2051 (Saros 125) |
![]() September 3, 2062 (Saros 126) |
![]() August 3, 2073 (Saros 127) |
![]() July 3, 2084 (Saros 128) |
![]() June 2, 2095 (Saros 129) |
![]() May 3, 2106 (Saros 130) |
![]() April 2, 2117 (Saros 131) |
![]() March 1, 2128 (Saros 132) |
![]() January 30, 2139 (Saros 133) |
![]() December 30, 2149 (Saros 134) |
![]() November 27, 2160 (Saros 135) |
![]() October 29, 2171 (Saros 136) |
![]() September 27, 2182 (Saros 137) |
![]() August 26, 2193 (Saros 138) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
![]() May 27, 1816 (Saros 115) |
![]() May 6, 1845 (Saros 116) |
![]() April 16, 1874 (Saros 117) |
![]() March 29, 1903 (Saros 118) |
![]() March 7, 1932 (Saros 119) |
![]() February 15, 1961 (Saros 120) |
![]() January 26, 1990 (Saros 121) |
![]() January 6, 2019 (Saros 122) |
![]() December 16, 2047 (Saros 123) |
![]() November 26, 2076 (Saros 124) |
![]() November 6, 2105 (Saros 125) |
![]() October 17, 2134 (Saros 126) |
![]() September 28, 2163 (Saros 127) |
![]() September 6, 2192 (Saros 128) |
References
[edit]- ^ "Sky Watch". Albuquerque Journal. 2019-01-05. p. A9. Retrieved 2023-10-27 – via Newspapers.com.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.
