Weierstrass elliptic function
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.
Motivation
[edit]A cubic of the form , where are complex numbers with , cannot be rationally parameterized.[1] Yet one still wants to find a way to parameterize it.
For the quadric ; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function: Because of the periodicity of the sine and cosine is chosen to be the domain, so the function is bijective.
In a similar way one can get a parameterization of by means of the doubly periodic -function (see in the section "Relation to elliptic curves"). This parameterization has the domain , which is topologically equivalent to a torus.[2]
There is another analogy to the trigonometric functions. Consider the integral function It can be simplified by substituting and : That means . So the sine function is an inverse function of an integral function.[3]
Elliptic functions are the inverse functions of elliptic integrals. In particular, let: Then the extension of to the complex plane equals the -function.[4] This invertibility is used in complex analysis to provide a solution to certain nonlinear differential equations satisfying the Painlevé property, i.e., those equations that admit poles as their only movable singularities.[5]
Definition
[edit]Let be two complex numbers that are linearly independent over and let be the period lattice generated by those numbers. Then the -function is defined as follows:
This series converges locally uniformly absolutely in the complex torus .
It is common to use and in the upper half-plane as generators of the lattice. Dividing by maps the lattice isomorphically onto the lattice with . Because can be substituted for , without loss of generality we can assume , and then define .
Properties
[edit]- is a meromorphic function with a pole of order 2 at each period in .
- is an even function. That means for all , which can be seen in the following way:
- The second last equality holds because . Since the sum converges absolutely this rearrangement does not change the limit.
- The derivative of is given by:[6]
- and are doubly periodic with the periods and .[6] This means: It follows that and for all .
Laurent expansion
[edit]Let . Then for the -function has the following Laurent expansion where for are so called Eisenstein series.[6]
Differential equation
[edit]Set and . Then the -function satisfies the differential equation[6] This relation can be verified by forming a linear combination of powers of and to eliminate the pole at . This yields an entire elliptic function that has to be constant by Liouville's theorem.[6]
Invariants
[edit]The coefficients of the above differential equation g2 and g3 are known as the invariants. Because they depend on the lattice they can be viewed as functions in and .
The series expansion suggests that g2 and g3 are homogeneous functions of degree −4 and −6. That is[7] for .
If and are chosen in such a way that , g2 and g3 can be interpreted as functions on the upper half-plane .
Let . One has:[8] That means g2 and g3 are only scaled by doing this. Set and As functions of are so called modular forms.
The Fourier series for and are given as follows:[9] where is the divisor function and is the nome.
Modular discriminant
[edit]The modular discriminant Δ is defined as the discriminant of the polynomial on the right-hand side of the above differential equation: The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as where with ad − bc = 1.[10]
Note that where is the Dedekind eta function.[11]
For the Fourier coefficients of , see Ramanujan tau function.
The constants e1, e2 and e3
[edit], and are usually used to denote the values of the -function at the half-periods. They are pairwise distinct and only depend on the lattice and not on its generators.[12]
, and are the roots of the cubic polynomial and are related by the equation: Because those roots are distinct the discriminant does not vanish on the upper half plane.[13] Now we can rewrite the differential equation: That means the half-periods are zeros of .
The invariants and can be expressed in terms of these constants in the following way:[14] , and are related to the modular lambda function:
Relation to Jacobi's elliptic functions
[edit]For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.
The basic relations are:[15] where and are the three roots described above and where the modulus k of the Jacobi functions equals and their argument w equals
Relation to Jacobi's theta functions
[edit]The function can be represented by Jacobi's theta functions: where is the nome and is the period ratio .[16] This also provides a very rapid algorithm for computing .
Relation to elliptic curves
[edit]Consider the embedding of the cubic curve in the complex projective plane
For this cubic there exists no rational parameterization, if .[1] In this case it is also called an elliptic curve. Nevertheless there is a parameterization in homogeneous coordinates that uses the -function and its derivative :[17]
Now the map is bijective and parameterizes the elliptic curve .
is an abelian group and a topological space, equipped with the quotient topology.
It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair with there exists a lattice , such that
and .[18]
The statement that elliptic curves over can be parameterized over , is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.
Addition theorems
[edit]Let , so that . Then one has:[19]
As well as the duplication formula:[19]
These formulas also have a geometric interpretation, if one looks at the elliptic curve together with the mapping as in the previous section.
The group structure of translates to the curve and can be geometrically interpreted there:
The sum of three pairwise different points is zero if and only if they lie on the same line in .[20]
This is equivalent to: where , and .[21]
Typography
[edit]The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.[footnote 1]
In computing, the letter ℘ is available as \wp
in TeX. In Unicode the code point is U+2118 ℘ SCRIPT CAPITAL P (℘, ℘), with the more correct alias weierstrass elliptic function.[footnote 2] In HTML, it can be escaped as ℘
.
Preview | ℘ | |
---|---|---|
Unicode name | SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION | |
Encodings | decimal | hex |
Unicode | 8472 | U+2118 |
UTF-8 | 226 132 152 | E2 84 98 |
Numeric character reference | ℘ |
℘ |
Named character reference | ℘, ℘ |
See also
[edit]Footnotes
[edit]- ^ This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.[22]
- ^ The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like U+1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.[23][24]
References
[edit]- ^ a b Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8, ISBN 978-3-8348-2348-9
- ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259, ISBN 978-3-540-32058-6
- ^ Jeremy Gray (2015), Real and the complex: a history of analysis in the 19th century (in German), Cham, p. 71, ISBN 978-3-319-23715-2
{{citation}}
: CS1 maint: location missing publisher (link) - ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294, ISBN 978-3-540-32058-6
- ^ Ablowitz, Mark J.; Fokas, Athanassios S. (2003). Complex Variables: Introduction and Applications. Cambridge University Press. p. 185. doi:10.1017/cbo9780511791246. ISBN 978-0-521-53429-1.
- ^ a b c d e Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 11, ISBN 0-387-90185-X
- ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 14. ISBN 0-387-90185-X. OCLC 2121639.
- ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 14, ISBN 0-387-90185-X
- ^ Apostol, Tom M. (1990). Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. p. 20. ISBN 0-387-97127-0. OCLC 20262861.
- ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 50. ISBN 0-387-90185-X. OCLC 2121639.
- ^ Chandrasekharan, K. (Komaravolu), 1920- (1985). Elliptic functions. Berlin: Springer-Verlag. p. 122. ISBN 0-387-15295-4. OCLC 12053023.
{{cite book}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) - ^ Busam, Rolf (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270, ISBN 978-3-540-32058-6
- ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 13, ISBN 0-387-90185-X
- ^ K. Chandrasekharan (1985), Elliptic functions (in German), Berlin: Springer-Verlag, p. 33, ISBN 0-387-15295-4
- ^ Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. p. 721. LCCN 59014456.
- ^ Reinhardt, W. P.; Walker, P. L. (2010), "Weierstrass Elliptic and Modular Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12, ISBN 978-3-8348-2348-9
- ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111, ISBN 978-3-8348-2348-9
- ^ a b Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286, ISBN 978-3-540-32058-6
- ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 287, ISBN 978-3-540-32058-6
- ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 288, ISBN 978-3-540-32058-6
- ^ teika kazura (2017-08-17), The letter ℘ Name & origin?, MathOverflow, retrieved 2018-08-30
- ^ "Known Anomalies in Unicode Character Names". Unicode Technical Note #27. version 4. Unicode, Inc. 2017-04-10. Retrieved 2017-07-20.
- ^ "NameAliases-10.0.0.txt". Unicode, Inc. 2017-05-06. Retrieved 2017-07-20.
- Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 18". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 627. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
- N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island ISBN 0-8218-4532-2
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second Edition (1990), Springer, New York ISBN 0-387-97127-0 (See chapter 1.)
- K. Chandrasekharan, Elliptic functions (1980), Springer-Verlag ISBN 0-387-15295-4
- Konrad Knopp, Funktionentheorie II (1947), Dover Publications; Republished in English translation as Theory of Functions (1996), Dover Publications ISBN 0-486-69219-1
- Serge Lang, Elliptic Functions (1973), Addison-Wesley, ISBN 0-201-04162-6
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1952, chapters 20 and 21
External links
[edit]- "Weierstrass elliptic functions", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Weierstrass's elliptic functions on Mathworld.
- Chapter 23, Weierstrass Elliptic and Modular Functions in DLMF (Digital Library of Mathematical Functions) by W. P. Reinhardt and P. L. Walker.
- Weierstrass P function and its derivative implemented in C by David Dumas