Isotopes of vanadium
| |||||||||||||||||||||||||||||||
Standard atomic weight Ar°(V) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring vanadium (23V) is composed of one stable isotope 51V and one radioactive isotope 50V with a half-life of 2.71×1017 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being 49V with a half-life of 330 days, and 48V with a half-life of 15.9735 days. All of the remaining radioactive isotopes have half-lives shorter than an hour, the majority of them below 10 seconds, the least stable being 42V with a half-life shorter than 55 nanoseconds, with all of the isotopes lighter than it, and none of the heavier, have unknown half-lives. In 4 isotopes, metastable excited states were found (including 2 metastable states for 60V), which adds up to 5 meta states.
The primary decay mode before the most abundant stable isotope 51V is electron capture. The next most common mode is beta decay. The primary decay products before 51V are element 22 (titanium) isotopes and the primary products after are element 24 (chromium) isotopes.
List of isotopes
[edit]Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4][n 5] |
Decay mode [n 6] |
Daughter isotope [n 7] |
Spin and parity [n 8][n 5] |
Natural abundance (mole fraction) | Note | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 5] | Normal proportion | Range of variation | |||||||||||||||||
40V | 23 | 17 | 40.01109(54)# | p | 39Ti | 2−# | |||||||||||||
41V | 23 | 18 | 40.99978(22)# | p | 40Ti | 7/2−# | |||||||||||||
42V | 23 | 19 | 41.99123(21)# | <55 ns | p | 41Ti | 2−# | ||||||||||||
43V | 23 | 20 | 42.98065(25)# | 80# ms | β+ | 43Ti | 7/2−# | ||||||||||||
44V | 23 | 21 | 43.97411(13) | 111(7) ms | β+ (>99.9%) | 44Ti | (2+) | ||||||||||||
β+, α (<.1%) | 40Ca | ||||||||||||||||||
44mV | 270(100)# keV | 150(3) ms | β+ | 44Ti | (6+) | ||||||||||||||
45V | 23 | 22 | 44.965776(18) | 547(6) ms | β+ | 45Ti | 7/2− | ||||||||||||
46V | 23 | 23 | 45.9602005(11) | 422.50(11) ms | β+ | 46Ti | 0+ | ||||||||||||
46mV | 801.46(10) keV | 1.02(7) ms | IT | 46V | 3+ | ||||||||||||||
47V | 23 | 24 | 46.9549089(9) | 32.6(3) min | β+ | 47Ti | 3/2− | ||||||||||||
48V | 23 | 25 | 47.9522537(27) | 15.9735(25) d | β+ | 48Ti | 4+ | ||||||||||||
49V | 23 | 26 | 48.9485161(12) | 329(3) d | EC | 49Ti | 7/2− | ||||||||||||
50V[n 9] | 23 | 27 | 49.9471585(11) | 2.71(13)×1017 y | β+ | 50Ti | 6+ | 0.00250(4) | 0.002487–0.002502 | ||||||||||
β− (<3%[3]) | 50Cr | ||||||||||||||||||
51V | 23 | 28 | 50.9439595(11) | Stable | 7/2− | 0.99750(4) | 0.997498–0.997513 | See V-51 nuclear magnetic resonance | |||||||||||
52V | 23 | 29 | 51.9447755(11) | 3.743(5) min | β− | 52Cr | 3+ | ||||||||||||
53V | 23 | 30 | 52.944338(3) | 1.60(4) min | β− | 53Cr | 7/2− | ||||||||||||
54V | 23 | 31 | 53.946440(16) | 49.8(5) s | β− | 54Cr | 3+ | ||||||||||||
54mV | 108(3) keV | 900(500) ns | (5+) | ||||||||||||||||
55V | 23 | 32 | 54.94723(11) | 6.54(15) s | β− | 55Cr | (7/2−)# | ||||||||||||
56V | 23 | 33 | 55.95053(22) | 216(4) ms | β− (>99.9%) | 56Cr | (1+) | ||||||||||||
β−, n | 55Cr | ||||||||||||||||||
57V | 23 | 34 | 56.95256(25) | 0.35(1) s | β− (>99.9%) | 57Cr | (3/2−) | ||||||||||||
β−, n (<.1%) | 56Cr | ||||||||||||||||||
58V | 23 | 35 | 57.95683(27) | 191(8) ms | β− (>99.9%) | 58Cr | 3+# | ||||||||||||
β−, n (<.1%) | 57Cr | ||||||||||||||||||
59V | 23 | 36 | 58.96021(33) | 75(7) ms | β− (>99.9%) | 59Cr | 7/2−# | ||||||||||||
β−, n (<.1%) | 58Cr | ||||||||||||||||||
60V | 23 | 37 | 59.96503(51) | 122(18) ms | β− (>99.9%) | 60Cr | 3+# | ||||||||||||
β−, n (<.1%) | 59Cr | ||||||||||||||||||
60m1V | 0(150)# keV | 40(15) ms | 1+# | ||||||||||||||||
60m2V | 101(1) keV | >400 ns | |||||||||||||||||
61V | 23 | 38 | 60.96848(43)# | 47.0(12) ms | β− | 61Cr | 7/2−# | ||||||||||||
62V | 23 | 39 | 61.97378(54)# | 33.5(20) ms | β− | 62Cr | 3+# | ||||||||||||
63V | 23 | 40 | 62.97755(64)# | 17(3) ms | β− | 63Cr | (7/2−)# | ||||||||||||
64V | 23 | 41 | 63.98347(75)# | 10# ms [>300 ns] | |||||||||||||||
65V | 23 | 42 | 64.98792(86)# | 10# ms | 5/2−# | ||||||||||||||
66V[4] | 23 | 43 | 65.99324(54)# | 10# ms (>620 ns) |
β−?[n 10] | 66Cr | |||||||||||||
β−, n?[n 10] | 65Cr | ||||||||||||||||||
β−, 2n?[n 10] | 64Cr | ||||||||||||||||||
67V[5] | 23 | 44 | 66.99813(64)# | 8# ms (>620 ns) |
β−?[n 10] | 67Cr | 5/2−# | ||||||||||||
β−, n?[n 10] | 66Cr | ||||||||||||||||||
β−, 2n?[n 10] | 65Cr | ||||||||||||||||||
This table header & footer: |
- ^ mV – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture IT: Isomeric transition
p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Primordial radionuclide
- ^ a b c d e f Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
References
[edit]- ^ "Standard Atomic Weights: Vanadium". CIAAW. 1977.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Tarasov, O. B.; et al. (April 2009). "Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with 17 ≤ Z ≤ 25". Physical Review Letters. 102 (14): 142501. arXiv:0903.1975. Bibcode:2009PhRvL.102n2501T. doi:10.1103/PhysRevLett.102.142501. PMID 19392430. S2CID 42329617. Retrieved 3 January 2023.
- ^ Tarasov, O. B.; et al. (May 2013). "Production cross sections from 82 Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line". Physical Review C. 87 (5): 054612. arXiv:1303.7164. Bibcode:2013PhRvC..87e4612T. doi:10.1103/PhysRevC.87.054612.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
- History of discovery: A. Shore, A. Fritsch, M. Heim, A. Schuh, M. Thoennessen. Discovery of the Vanadium Isotopes. arXiv:0907.1994 (2009).