In mathematics , the K -function , typically denoted K (z ), is a generalization of the hyperfactorial to complex numbers , similar to the generalization of the factorial to the gamma function .
Formally, the K -function is defined as
K
(
z
)
=
(
2
π
)
−
z
−
1
2
exp
[
(
z
2
)
+
∫
0
z
−
1
ln
Γ
(
t
+
1
)
d
t
]
.
{\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1)\,dt\right].}
It can also be given in closed form as
K
(
z
)
=
exp
[
ζ
′
(
−
1
,
z
)
−
ζ
′
(
−
1
)
]
{\displaystyle K(z)=\exp {\bigl [}\zeta '(-1,z)-\zeta '(-1){\bigr ]}}
where ζ ′(z ) denotes the derivative of the Riemann zeta function , ζ (a ,z ) denotes the Hurwitz zeta function and
ζ
′
(
a
,
z
)
=
d
e
f
∂
ζ
(
s
,
z
)
∂
s
|
s
=
a
.
{\displaystyle \zeta '(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left.{\frac {\partial \zeta (s,z)}{\partial s}}\right|_{s=a}.}
Another expression using the polygamma function is[1]
K
(
z
)
=
exp
[
ψ
(
−
2
)
(
z
)
+
z
2
−
z
2
−
z
2
ln
2
π
]
{\displaystyle K(z)=\exp \left[\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln 2\pi \right]}
Or using the balanced generalization of the polygamma function :[2]
K
(
z
)
=
A
exp
[
ψ
(
−
2
,
z
)
+
z
2
−
z
2
]
{\displaystyle K(z)=A\exp \left[\psi (-2,z)+{\frac {z^{2}-z}{2}}\right]}
where A is the Glaisher constant .
Similar to the Bohr-Mollerup Theorem for the gamma function , the log K-function is the unique (up to an additive constant) eventually 2-convex solution to the equation
Δ
f
(
x
)
=
x
ln
(
x
)
{\displaystyle \Delta f(x)=x\ln(x)}
where
Δ
{\displaystyle \Delta }
is the forward difference operator.[3]
It can be shown that for α > 0 :
∫
α
α
+
1
ln
K
(
x
)
d
x
−
∫
0
1
ln
K
(
x
)
d
x
=
1
2
α
2
(
ln
α
−
1
2
)
{\displaystyle \int _{\alpha }^{\alpha +1}\ln K(x)\,dx-\int _{0}^{1}\ln K(x)\,dx={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)}
This can be shown by defining a function f such that:
f
(
α
)
=
∫
α
α
+
1
ln
K
(
x
)
d
x
{\displaystyle f(\alpha )=\int _{\alpha }^{\alpha +1}\ln K(x)\,dx}
Differentiating this identity now with respect to α yields:
f
′
(
α
)
=
ln
K
(
α
+
1
)
−
ln
K
(
α
)
{\displaystyle f'(\alpha )=\ln K(\alpha +1)-\ln K(\alpha )}
Applying the logarithm rule we get
f
′
(
α
)
=
ln
K
(
α
+
1
)
K
(
α
)
{\displaystyle f'(\alpha )=\ln {\frac {K(\alpha +1)}{K(\alpha )}}}
By the definition of the K -function we write
f
′
(
α
)
=
α
ln
α
{\displaystyle f'(\alpha )=\alpha \ln \alpha }
And so
f
(
α
)
=
1
2
α
2
(
ln
α
−
1
2
)
+
C
{\displaystyle f(\alpha )={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)+C}
Setting α = 0 we have
∫
0
1
ln
K
(
x
)
d
x
=
lim
t
→
0
[
1
2
t
2
(
ln
t
−
1
2
)
]
+
C
=
C
{\displaystyle \int _{0}^{1}\ln K(x)\,dx=\lim _{t\rightarrow 0}\left[{\tfrac {1}{2}}t^{2}\left(\ln t-{\tfrac {1}{2}}\right)\right]+C\ =C}
Now one can deduce the identity above.
The K -function is closely related to the gamma function and the Barnes G -function ; for natural numbers n , we have
K
(
n
)
=
(
Γ
(
n
)
)
n
−
1
G
(
n
)
.
{\displaystyle K(n)={\frac {{\bigl (}\Gamma (n){\bigr )}^{n-1}}{G(n)}}.}
More prosaically, one may write
K
(
n
+
1
)
=
1
1
⋅
2
2
⋅
3
3
⋯
n
n
.
{\displaystyle K(n+1)=1^{1}\cdot 2^{2}\cdot 3^{3}\cdots n^{n}.}
The first values are
1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence A002109 in the OEIS ).
^ Adamchik, Victor S. (1998), "PolyGamma Functions of Negative Order" , Journal of Computational and Applied Mathematics , 100 : 191–199, archived from the original on 2016-03-03
^ Espinosa, Olivier; Moll, Victor Hugo , "A Generalized polygamma function" (PDF) , Integral Transforms and Special Functions , 15 (2): 101–115, archived (PDF) from the original on 2023-05-14
^ "A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial" (PDF) . Bitstream : 14. Archived (PDF) from the original on 2023-04-05.