Jump to content

Kampé de Fériet function

From Wikipedia, the free encyclopedia

In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.

The Kampé de Fériet function is given by

Applications

[edit]

The general sextic equation can be solved in terms of Kampé de Fériet functions.[1]

See also

[edit]

References

[edit]
  • Exton, Harold (1978), Handbook of hypergeometric integrals, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-122-0, MR 0474684
  • Kampé de Fériet, M. J. (1937), La fonction hypergéométrique., Mémorial des sciences mathématiques (in French), vol. 85, Paris: Gauthier-Villars, JFM 63.0996.03
  • Ragab, F. J. (1963). "Expansions of Kampe de Feriet's double hypergeometric function of higher order". J. reine angew. Math. 212 (212): 113–119. doi:10.1515/crll.1963.212.113. S2CID 118329382.
[edit]