This article summarizes several identities in exterior calculus , a mathematical notation used in differential geometry .[1] [2] [3] [4] [5]
The following summarizes short definitions and notations that are used in this article.
M
{\displaystyle M}
,
N
{\displaystyle N}
are
n
{\displaystyle n}
-dimensional smooth manifolds, where
n
∈
N
{\displaystyle n\in \mathbb {N} }
. That is, differentiable manifolds that can be differentiated enough times for the purposes on this page.
p
∈
M
{\displaystyle p\in M}
,
q
∈
N
{\displaystyle q\in N}
denote one point on each of the manifolds.
The boundary of a manifold
M
{\displaystyle M}
is a manifold
∂
M
{\displaystyle \partial M}
, which has dimension
n
−
1
{\displaystyle n-1}
. An orientation on
M
{\displaystyle M}
induces an orientation on
∂
M
{\displaystyle \partial M}
.
We usually denote a submanifold by
Σ
⊂
M
{\displaystyle \Sigma \subset M}
.
Tangent and cotangent bundles [ edit ]
T
M
{\displaystyle TM}
,
T
∗
M
{\displaystyle T^{*}M}
denote the tangent bundle and cotangent bundle , respectively, of the smooth manifold
M
{\displaystyle M}
.
T
p
M
{\displaystyle T_{p}M}
,
T
q
N
{\displaystyle T_{q}N}
denote the tangent spaces of
M
{\displaystyle M}
,
N
{\displaystyle N}
at the points
p
{\displaystyle p}
,
q
{\displaystyle q}
, respectively.
T
p
∗
M
{\displaystyle T_{p}^{*}M}
denotes the cotangent space of
M
{\displaystyle M}
at the point
p
{\displaystyle p}
.
Sections of the tangent bundles, also known as vector fields , are typically denoted as
X
,
Y
,
Z
∈
Γ
(
T
M
)
{\displaystyle X,Y,Z\in \Gamma (TM)}
such that at a point
p
∈
M
{\displaystyle p\in M}
we have
X
|
p
,
Y
|
p
,
Z
|
p
∈
T
p
M
{\displaystyle X|_{p},Y|_{p},Z|_{p}\in T_{p}M}
. Sections of the cotangent bundle, also known as differential 1-forms (or covector fields), are typically denoted as
α
,
β
∈
Γ
(
T
∗
M
)
{\displaystyle \alpha ,\beta \in \Gamma (T^{*}M)}
such that at a point
p
∈
M
{\displaystyle p\in M}
we have
α
|
p
,
β
|
p
∈
T
p
∗
M
{\displaystyle \alpha |_{p},\beta |_{p}\in T_{p}^{*}M}
. An alternative notation for
Γ
(
T
∗
M
)
{\displaystyle \Gamma (T^{*}M)}
is
Ω
1
(
M
)
{\displaystyle \Omega ^{1}(M)}
.
Differential
k
{\displaystyle k}
-forms, which we refer to simply as
k
{\displaystyle k}
-forms here, are differential forms defined on
T
M
{\displaystyle TM}
. We denote the set of all
k
{\displaystyle k}
-forms as
Ω
k
(
M
)
{\displaystyle \Omega ^{k}(M)}
. For
0
≤
k
,
l
,
m
≤
n
{\displaystyle 0\leq k,\ l,\ m\leq n}
we usually write
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
,
β
∈
Ω
l
(
M
)
{\displaystyle \beta \in \Omega ^{l}(M)}
,
γ
∈
Ω
m
(
M
)
{\displaystyle \gamma \in \Omega ^{m}(M)}
.
0
{\displaystyle 0}
-forms
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
are just scalar functions
C
∞
(
M
)
{\displaystyle C^{\infty }(M)}
on
M
{\displaystyle M}
.
1
∈
Ω
0
(
M
)
{\displaystyle \mathbf {1} \in \Omega ^{0}(M)}
denotes the constant
0
{\displaystyle 0}
-form equal to
1
{\displaystyle 1}
everywhere.
Omitted elements of a sequence [ edit ]
When we are given
(
k
+
1
)
{\displaystyle (k+1)}
inputs
X
0
,
…
,
X
k
{\displaystyle X_{0},\ldots ,X_{k}}
and a
k
{\displaystyle k}
-form
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
we denote omission of the
i
{\displaystyle i}
th entry by writing
α
(
X
0
,
…
,
X
^
i
,
…
,
X
k
)
:=
α
(
X
0
,
…
,
X
i
−
1
,
X
i
+
1
,
…
,
X
k
)
.
{\displaystyle \alpha (X_{0},\ldots ,{\hat {X}}_{i},\ldots ,X_{k}):=\alpha (X_{0},\ldots ,X_{i-1},X_{i+1},\ldots ,X_{k}).}
The exterior product is also known as the wedge product . It is denoted by
∧
:
Ω
k
(
M
)
×
Ω
l
(
M
)
→
Ω
k
+
l
(
M
)
{\displaystyle \wedge :\Omega ^{k}(M)\times \Omega ^{l}(M)\rightarrow \Omega ^{k+l}(M)}
. The exterior product of a
k
{\displaystyle k}
-form
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
and an
l
{\displaystyle l}
-form
β
∈
Ω
l
(
M
)
{\displaystyle \beta \in \Omega ^{l}(M)}
produce a
(
k
+
l
)
{\displaystyle (k+l)}
-form
α
∧
β
∈
Ω
k
+
l
(
M
)
{\displaystyle \alpha \wedge \beta \in \Omega ^{k+l}(M)}
. It can be written using the set
S
(
k
,
k
+
l
)
{\displaystyle S(k,k+l)}
of all permutations
σ
{\displaystyle \sigma }
of
{
1
,
…
,
n
}
{\displaystyle \{1,\ldots ,n\}}
such that
σ
(
1
)
<
…
<
σ
(
k
)
,
σ
(
k
+
1
)
<
…
<
σ
(
k
+
l
)
{\displaystyle \sigma (1)<\ldots <\sigma (k),\ \sigma (k+1)<\ldots <\sigma (k+l)}
as
(
α
∧
β
)
(
X
1
,
…
,
X
k
+
l
)
=
∑
σ
∈
S
(
k
,
k
+
l
)
sign
(
σ
)
α
(
X
σ
(
1
)
,
…
,
X
σ
(
k
)
)
⊗
β
(
X
σ
(
k
+
1
)
,
…
,
X
σ
(
k
+
l
)
)
.
{\displaystyle (\alpha \wedge \beta )(X_{1},\ldots ,X_{k+l})=\sum _{\sigma \in S(k,k+l)}{\text{sign}}(\sigma )\alpha (X_{\sigma (1)},\ldots ,X_{\sigma (k)})\otimes \beta (X_{\sigma (k+1)},\ldots ,X_{\sigma (k+l)}).}
Directional derivative [ edit ]
The directional derivative of a 0-form
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
along a section
X
∈
Γ
(
T
M
)
{\displaystyle X\in \Gamma (TM)}
is a 0-form denoted
∂
X
f
.
{\displaystyle \partial _{X}f.}
Exterior derivative [ edit ]
The exterior derivative
d
k
:
Ω
k
(
M
)
→
Ω
k
+
1
(
M
)
{\displaystyle d_{k}:\Omega ^{k}(M)\rightarrow \Omega ^{k+1}(M)}
is defined for all
0
≤
k
≤
n
{\displaystyle 0\leq k\leq n}
. We generally omit the subscript when it is clear from the context.
For a
0
{\displaystyle 0}
-form
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
we have
d
0
f
∈
Ω
1
(
M
)
{\displaystyle d_{0}f\in \Omega ^{1}(M)}
as the
1
{\displaystyle 1}
-form that gives the directional derivative, i.e., for the section
X
∈
Γ
(
T
M
)
{\displaystyle X\in \Gamma (TM)}
we have
(
d
0
f
)
(
X
)
=
∂
X
f
{\displaystyle (d_{0}f)(X)=\partial _{X}f}
, the directional derivative of
f
{\displaystyle f}
along
X
{\displaystyle X}
.[6]
For
0
<
k
≤
n
{\displaystyle 0<k\leq n}
,[6]
(
d
k
ω
)
(
X
0
,
…
,
X
k
)
=
∑
0
≤
j
≤
k
(
−
1
)
j
d
0
(
ω
(
X
0
,
…
,
X
^
j
,
…
,
X
k
)
)
(
X
j
)
+
∑
0
≤
i
<
j
≤
k
(
−
1
)
i
+
j
ω
(
[
X
i
,
X
j
]
,
X
0
,
…
,
X
^
i
,
…
,
X
^
j
,
…
,
X
k
)
.
{\displaystyle (d_{k}\omega )(X_{0},\ldots ,X_{k})=\sum _{0\leq j\leq k}(-1)^{j}d_{0}(\omega (X_{0},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}))(X_{j})+\sum _{0\leq i<j\leq k}(-1)^{i+j}\omega ([X_{i},X_{j}],X_{0},\ldots ,{\hat {X}}_{i},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}).}
The Lie bracket of sections
X
,
Y
∈
Γ
(
T
M
)
{\displaystyle X,Y\in \Gamma (TM)}
is defined as the unique section
[
X
,
Y
]
∈
Γ
(
T
M
)
{\displaystyle [X,Y]\in \Gamma (TM)}
that satisfies
∀
f
∈
Ω
0
(
M
)
⇒
∂
[
X
,
Y
]
f
=
∂
X
∂
Y
f
−
∂
Y
∂
X
f
.
{\displaystyle \forall f\in \Omega ^{0}(M)\Rightarrow \partial _{[X,Y]}f=\partial _{X}\partial _{Y}f-\partial _{Y}\partial _{X}f.}
If
ϕ
:
M
→
N
{\displaystyle \phi :M\rightarrow N}
is a smooth map, then
d
ϕ
|
p
:
T
p
M
→
T
ϕ
(
p
)
N
{\displaystyle d\phi |_{p}:T_{p}M\rightarrow T_{\phi (p)}N}
defines a tangent map from
M
{\displaystyle M}
to
N
{\displaystyle N}
. It is defined through curves
γ
{\displaystyle \gamma }
on
M
{\displaystyle M}
with derivative
γ
′
(
0
)
=
X
∈
T
p
M
{\displaystyle \gamma '(0)=X\in T_{p}M}
such that
d
ϕ
(
X
)
:=
(
ϕ
∘
γ
)
′
.
{\displaystyle d\phi (X):=(\phi \circ \gamma )'.}
Note that
ϕ
{\displaystyle \phi }
is a
0
{\displaystyle 0}
-form with values in
N
{\displaystyle N}
.
If
ϕ
:
M
→
N
{\displaystyle \phi :M\rightarrow N}
is a smooth map, then the pull-back of a
k
{\displaystyle k}
-form
α
∈
Ω
k
(
N
)
{\displaystyle \alpha \in \Omega ^{k}(N)}
is defined such that for any
k
{\displaystyle k}
-dimensional submanifold
Σ
⊂
M
{\displaystyle \Sigma \subset M}
∫
Σ
ϕ
∗
α
=
∫
ϕ
(
Σ
)
α
.
{\displaystyle \int _{\Sigma }\phi ^{*}\alpha =\int _{\phi (\Sigma )}\alpha .}
The pull-back can also be expressed as
(
ϕ
∗
α
)
(
X
1
,
…
,
X
k
)
=
α
(
d
ϕ
(
X
1
)
,
…
,
d
ϕ
(
X
k
)
)
.
{\displaystyle (\phi ^{*}\alpha )(X_{1},\ldots ,X_{k})=\alpha (d\phi (X_{1}),\ldots ,d\phi (X_{k})).}
Also known as the interior derivative, the interior product given a section
Y
∈
Γ
(
T
M
)
{\displaystyle Y\in \Gamma (TM)}
is a map
ι
Y
:
Ω
k
+
1
(
M
)
→
Ω
k
(
M
)
{\displaystyle \iota _{Y}:\Omega ^{k+1}(M)\rightarrow \Omega ^{k}(M)}
that effectively substitutes the first input of a
(
k
+
1
)
{\displaystyle (k+1)}
-form with
Y
{\displaystyle Y}
. If
α
∈
Ω
k
+
1
(
M
)
{\displaystyle \alpha \in \Omega ^{k+1}(M)}
and
X
i
∈
Γ
(
T
M
)
{\displaystyle X_{i}\in \Gamma (TM)}
then
(
ι
Y
α
)
(
X
1
,
…
,
X
k
)
=
α
(
Y
,
X
1
,
…
,
X
k
)
.
{\displaystyle (\iota _{Y}\alpha )(X_{1},\ldots ,X_{k})=\alpha (Y,X_{1},\ldots ,X_{k}).}
Given a nondegenerate bilinear form
g
p
(
⋅
,
⋅
)
{\displaystyle g_{p}(\cdot ,\cdot )}
on each
T
p
M
{\displaystyle T_{p}M}
that is continuous on
M
{\displaystyle M}
, the manifold becomes a pseudo-Riemannian manifold . We denote the metric tensor
g
{\displaystyle g}
, defined pointwise by
g
(
X
,
Y
)
|
p
=
g
p
(
X
|
p
,
Y
|
p
)
{\displaystyle g(X,Y)|_{p}=g_{p}(X|_{p},Y|_{p})}
. We call
s
=
sign
(
g
)
{\displaystyle s=\operatorname {sign} (g)}
the signature of the metric. A Riemannian manifold has
s
=
1
{\displaystyle s=1}
, whereas Minkowski space has
s
=
−
1
{\displaystyle s=-1}
.
Musical isomorphisms [ edit ]
The metric tensor
g
(
⋅
,
⋅
)
{\displaystyle g(\cdot ,\cdot )}
induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat
♭
{\displaystyle \flat }
and sharp
♯
{\displaystyle \sharp }
. A section
A
∈
Γ
(
T
M
)
{\displaystyle A\in \Gamma (TM)}
corresponds to the unique one-form
A
♭
∈
Ω
1
(
M
)
{\displaystyle A^{\flat }\in \Omega ^{1}(M)}
such that for all sections
X
∈
Γ
(
T
M
)
{\displaystyle X\in \Gamma (TM)}
, we have:
A
♭
(
X
)
=
g
(
A
,
X
)
.
{\displaystyle A^{\flat }(X)=g(A,X).}
A one-form
α
∈
Ω
1
(
M
)
{\displaystyle \alpha \in \Omega ^{1}(M)}
corresponds to the unique vector field
α
♯
∈
Γ
(
T
M
)
{\displaystyle \alpha ^{\sharp }\in \Gamma (TM)}
such that for all
X
∈
Γ
(
T
M
)
{\displaystyle X\in \Gamma (TM)}
, we have:
α
(
X
)
=
g
(
α
♯
,
X
)
.
{\displaystyle \alpha (X)=g(\alpha ^{\sharp },X).}
These mappings extend via multilinearity to mappings from
k
{\displaystyle k}
-vector fields to
k
{\displaystyle k}
-forms and
k
{\displaystyle k}
-forms to
k
{\displaystyle k}
-vector fields through
(
A
1
∧
A
2
∧
⋯
∧
A
k
)
♭
=
A
1
♭
∧
A
2
♭
∧
⋯
∧
A
k
♭
{\displaystyle (A_{1}\wedge A_{2}\wedge \cdots \wedge A_{k})^{\flat }=A_{1}^{\flat }\wedge A_{2}^{\flat }\wedge \cdots \wedge A_{k}^{\flat }}
(
α
1
∧
α
2
∧
⋯
∧
α
k
)
♯
=
α
1
♯
∧
α
2
♯
∧
⋯
∧
α
k
♯
.
{\displaystyle (\alpha _{1}\wedge \alpha _{2}\wedge \cdots \wedge \alpha _{k})^{\sharp }=\alpha _{1}^{\sharp }\wedge \alpha _{2}^{\sharp }\wedge \cdots \wedge \alpha _{k}^{\sharp }.}
For an n -manifold M , the Hodge star operator
⋆
:
Ω
k
(
M
)
→
Ω
n
−
k
(
M
)
{\displaystyle {\star }:\Omega ^{k}(M)\rightarrow \Omega ^{n-k}(M)}
is a duality mapping taking a
k
{\displaystyle k}
-form
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
to an
(
n
−
k
)
{\displaystyle (n{-}k)}
-form
(
⋆
α
)
∈
Ω
n
−
k
(
M
)
{\displaystyle ({\star }\alpha )\in \Omega ^{n-k}(M)}
.
It can be defined in terms of an oriented frame
(
X
1
,
…
,
X
n
)
{\displaystyle (X_{1},\ldots ,X_{n})}
for
T
M
{\displaystyle TM}
, orthonormal with respect to the given metric tensor
g
{\displaystyle g}
:
(
⋆
α
)
(
X
1
,
…
,
X
n
−
k
)
=
α
(
X
n
−
k
+
1
,
…
,
X
n
)
.
{\displaystyle ({\star }\alpha )(X_{1},\ldots ,X_{n-k})=\alpha (X_{n-k+1},\ldots ,X_{n}).}
Co-differential operator [ edit ]
The co-differential operator
δ
:
Ω
k
(
M
)
→
Ω
k
−
1
(
M
)
{\displaystyle \delta :\Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)}
on an
n
{\displaystyle n}
dimensional manifold
M
{\displaystyle M}
is defined by
δ
:=
(
−
1
)
k
⋆
−
1
d
⋆
=
(
−
1
)
n
k
+
n
+
1
⋆
d
⋆
.
{\displaystyle \delta :=(-1)^{k}{\star }^{-1}d{\star }=(-1)^{nk+n+1}{\star }d{\star }.}
The Hodge–Dirac operator ,
d
+
δ
{\displaystyle d+\delta }
, is a Dirac operator studied in Clifford analysis .
An
n
{\displaystyle n}
-dimensional orientable manifold M is a manifold that can be equipped with a choice of an n -form
μ
∈
Ω
n
(
M
)
{\displaystyle \mu \in \Omega ^{n}(M)}
that is continuous and nonzero everywhere on M .
On an orientable manifold
M
{\displaystyle M}
the canonical choice of a volume form given a metric tensor
g
{\displaystyle g}
and an orientation is
d
e
t
:=
|
det
g
|
d
X
1
♭
∧
…
∧
d
X
n
♭
{\displaystyle \mathbf {det} :={\sqrt {|\det g|}}\;dX_{1}^{\flat }\wedge \ldots \wedge dX_{n}^{\flat }}
for any basis
d
X
1
,
…
,
d
X
n
{\displaystyle dX_{1},\ldots ,dX_{n}}
ordered to match the orientation.
Given a volume form
d
e
t
{\displaystyle \mathbf {det} }
and a unit normal vector
N
{\displaystyle N}
we can also define an area form
σ
:=
ι
N
det
{\displaystyle \sigma :=\iota _{N}{\textbf {det}}}
on the boundary
∂
M
.
{\displaystyle \partial M.}
A generalization of the metric tensor, the symmetric bilinear form between two
k
{\displaystyle k}
-forms
α
,
β
∈
Ω
k
(
M
)
{\displaystyle \alpha ,\beta \in \Omega ^{k}(M)}
, is defined pointwise on
M
{\displaystyle M}
by
⟨
α
,
β
⟩
|
p
:=
⋆
(
α
∧
⋆
β
)
|
p
.
{\displaystyle \langle \alpha ,\beta \rangle |_{p}:={\star }(\alpha \wedge {\star }\beta )|_{p}.}
The
L
2
{\displaystyle L^{2}}
-bilinear form for the space of
k
{\displaystyle k}
-forms
Ω
k
(
M
)
{\displaystyle \Omega ^{k}(M)}
is defined by
⟨
⟨
α
,
β
⟩
⟩
:=
∫
M
α
∧
⋆
β
.
{\displaystyle \langle \!\langle \alpha ,\beta \rangle \!\rangle :=\int _{M}\alpha \wedge {\star }\beta .}
In the case of a Riemannian manifold, each is an inner product (i.e. is positive-definite).
We define the Lie derivative
L
:
Ω
k
(
M
)
→
Ω
k
(
M
)
{\displaystyle {\mathcal {L}}:\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)}
through Cartan's magic formula for a given section
X
∈
Γ
(
T
M
)
{\displaystyle X\in \Gamma (TM)}
as
L
X
=
d
∘
ι
X
+
ι
X
∘
d
.
{\displaystyle {\mathcal {L}}_{X}=d\circ \iota _{X}+\iota _{X}\circ d.}
It describes the change of a
k
{\displaystyle k}
-form along a flow
ϕ
t
{\displaystyle \phi _{t}}
associated to the section
X
{\displaystyle X}
.
Laplace–Beltrami operator[ edit ]
The Laplacian
Δ
:
Ω
k
(
M
)
→
Ω
k
(
M
)
{\displaystyle \Delta :\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)}
is defined as
Δ
=
−
(
d
δ
+
δ
d
)
{\displaystyle \Delta =-(d\delta +\delta d)}
.
Important definitions [ edit ]
Definitions on Ωk (M )[ edit ]
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
is called...
closed if
d
α
=
0
{\displaystyle d\alpha =0}
exact if
α
=
d
β
{\displaystyle \alpha =d\beta }
for some
β
∈
Ω
k
−
1
{\displaystyle \beta \in \Omega ^{k-1}}
coclosed if
δ
α
=
0
{\displaystyle \delta \alpha =0}
coexact if
α
=
δ
β
{\displaystyle \alpha =\delta \beta }
for some
β
∈
Ω
k
+
1
{\displaystyle \beta \in \Omega ^{k+1}}
harmonic if closed and coclosed
The
k
{\displaystyle k}
-th cohomology of a manifold
M
{\displaystyle M}
and its exterior derivative operators
d
0
,
…
,
d
n
−
1
{\displaystyle d_{0},\ldots ,d_{n-1}}
is given by
H
k
(
M
)
:=
ker
(
d
k
)
im
(
d
k
−
1
)
{\displaystyle H^{k}(M):={\frac {{\text{ker}}(d_{k})}{{\text{im}}(d_{k-1})}}}
Two closed
k
{\displaystyle k}
-forms
α
,
β
∈
Ω
k
(
M
)
{\displaystyle \alpha ,\beta \in \Omega ^{k}(M)}
are in the same cohomology class if their difference is an exact form i.e.
[
α
]
=
[
β
]
⟺
α
−
β
=
d
η
for some
η
∈
Ω
k
−
1
(
M
)
{\displaystyle [\alpha ]=[\beta ]\ \ \Longleftrightarrow \ \ \alpha {-}\beta =d\eta \ {\text{ for some }}\eta \in \Omega ^{k-1}(M)}
A closed surface of genus
g
{\displaystyle g}
will have
2
g
{\displaystyle 2g}
generators which are harmonic.
Given
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
, its Dirichlet energy is
E
D
(
α
)
:=
1
2
⟨
⟨
d
α
,
d
α
⟩
⟩
+
1
2
⟨
⟨
δ
α
,
δ
α
⟩
⟩
{\displaystyle {\mathcal {E}}_{\text{D}}(\alpha ):={\dfrac {1}{2}}\langle \!\langle d\alpha ,d\alpha \rangle \!\rangle +{\dfrac {1}{2}}\langle \!\langle \delta \alpha ,\delta \alpha \rangle \!\rangle }
Exterior derivative properties [ edit ]
∫
Σ
d
α
=
∫
∂
Σ
α
{\displaystyle \int _{\Sigma }d\alpha =\int _{\partial \Sigma }\alpha }
( Stokes' theorem )
d
∘
d
=
0
{\displaystyle d\circ d=0}
( cochain complex )
d
(
α
∧
β
)
=
d
α
∧
β
+
(
−
1
)
k
α
∧
d
β
{\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta }
for
α
∈
Ω
k
(
M
)
,
β
∈
Ω
l
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)}
( Leibniz rule )
d
f
(
X
)
=
∂
X
f
{\displaystyle df(X)=\partial _{X}f}
for
f
∈
Ω
0
(
M
)
,
X
∈
Γ
(
T
M
)
{\displaystyle f\in \Omega ^{0}(M),\ X\in \Gamma (TM)}
( directional derivative )
d
α
=
0
{\displaystyle d\alpha =0}
for
α
∈
Ω
n
(
M
)
,
dim
(
M
)
=
n
{\displaystyle \alpha \in \Omega ^{n}(M),\ {\text{dim}}(M)=n}
Exterior product properties [ edit ]
α
∧
β
=
(
−
1
)
k
l
β
∧
α
{\displaystyle \alpha \wedge \beta =(-1)^{kl}\beta \wedge \alpha }
for
α
∈
Ω
k
(
M
)
,
β
∈
Ω
l
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)}
( alternating )
(
α
∧
β
)
∧
γ
=
α
∧
(
β
∧
γ
)
{\displaystyle (\alpha \wedge \beta )\wedge \gamma =\alpha \wedge (\beta \wedge \gamma )}
( associativity )
(
λ
α
)
∧
β
=
λ
(
α
∧
β
)
{\displaystyle (\lambda \alpha )\wedge \beta =\lambda (\alpha \wedge \beta )}
for
λ
∈
R
{\displaystyle \lambda \in \mathbb {R} }
( compatibility of scalar multiplication )
α
∧
(
β
1
+
β
2
)
=
α
∧
β
1
+
α
∧
β
2
{\displaystyle \alpha \wedge (\beta _{1}+\beta _{2})=\alpha \wedge \beta _{1}+\alpha \wedge \beta _{2}}
( distributivity over addition )
α
∧
α
=
0
{\displaystyle \alpha \wedge \alpha =0}
for
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
when
k
{\displaystyle k}
is odd or
rank
α
≤
1
{\displaystyle \operatorname {rank} \alpha \leq 1}
. The rank of a
k
{\displaystyle k}
-form
α
{\displaystyle \alpha }
means the minimum number of monomial terms (exterior products of one-forms) that must be summed to produce
α
{\displaystyle \alpha }
.
Pull-back properties [ edit ]
d
(
ϕ
∗
α
)
=
ϕ
∗
(
d
α
)
{\displaystyle d(\phi ^{*}\alpha )=\phi ^{*}(d\alpha )}
( commutative with
d
{\displaystyle d}
)
ϕ
∗
(
α
∧
β
)
=
(
ϕ
∗
α
)
∧
(
ϕ
∗
β
)
{\displaystyle \phi ^{*}(\alpha \wedge \beta )=(\phi ^{*}\alpha )\wedge (\phi ^{*}\beta )}
( distributes over
∧
{\displaystyle \wedge }
)
(
ϕ
1
∘
ϕ
2
)
∗
=
ϕ
2
∗
ϕ
1
∗
{\displaystyle (\phi _{1}\circ \phi _{2})^{*}=\phi _{2}^{*}\phi _{1}^{*}}
( contravariant )
ϕ
∗
f
=
f
∘
ϕ
{\displaystyle \phi ^{*}f=f\circ \phi }
for
f
∈
Ω
0
(
N
)
{\displaystyle f\in \Omega ^{0}(N)}
( function composition )
Musical isomorphism properties [ edit ]
(
X
♭
)
♯
=
X
{\displaystyle (X^{\flat })^{\sharp }=X}
(
α
♯
)
♭
=
α
{\displaystyle (\alpha ^{\sharp })^{\flat }=\alpha }
Interior product properties [ edit ]
ι
X
∘
ι
X
=
0
{\displaystyle \iota _{X}\circ \iota _{X}=0}
( nilpotent )
ι
X
∘
ι
Y
=
−
ι
Y
∘
ι
X
{\displaystyle \iota _{X}\circ \iota _{Y}=-\iota _{Y}\circ \iota _{X}}
ι
X
(
α
∧
β
)
=
(
ι
X
α
)
∧
β
+
(
−
1
)
k
α
∧
(
ι
X
β
)
{\displaystyle \iota _{X}(\alpha \wedge \beta )=(\iota _{X}\alpha )\wedge \beta +(-1)^{k}\alpha \wedge (\iota _{X}\beta )}
for
α
∈
Ω
k
(
M
)
,
β
∈
Ω
l
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)}
( Leibniz rule )
ι
X
α
=
α
(
X
)
{\displaystyle \iota _{X}\alpha =\alpha (X)}
for
α
∈
Ω
1
(
M
)
{\displaystyle \alpha \in \Omega ^{1}(M)}
ι
X
f
=
0
{\displaystyle \iota _{X}f=0}
for
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
ι
X
(
f
α
)
=
f
ι
X
α
{\displaystyle \iota _{X}(f\alpha )=f\iota _{X}\alpha }
for
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
Hodge star properties [ edit ]
⋆
(
λ
1
α
+
λ
2
β
)
=
λ
1
(
⋆
α
)
+
λ
2
(
⋆
β
)
{\displaystyle {\star }(\lambda _{1}\alpha +\lambda _{2}\beta )=\lambda _{1}({\star }\alpha )+\lambda _{2}({\star }\beta )}
for
λ
1
,
λ
2
∈
R
{\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {R} }
( linearity )
⋆
⋆
α
=
s
(
−
1
)
k
(
n
−
k
)
α
{\displaystyle {\star }{\star }\alpha =s(-1)^{k(n-k)}\alpha }
for
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
,
n
=
dim
(
M
)
{\displaystyle n=\dim(M)}
, and
s
=
sign
(
g
)
{\displaystyle s=\operatorname {sign} (g)}
the sign of the metric
⋆
(
−
1
)
=
s
(
−
1
)
k
(
n
−
k
)
⋆
{\displaystyle {\star }^{(-1)}=s(-1)^{k(n-k)}{\star }}
( inversion )
⋆
(
f
α
)
=
f
(
⋆
α
)
{\displaystyle {\star }(f\alpha )=f({\star }\alpha )}
for
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
( commutative with
0
{\displaystyle 0}
-forms )
⟨
⟨
α
,
α
⟩
⟩
=
⟨
⟨
⋆
α
,
⋆
α
⟩
⟩
{\displaystyle \langle \!\langle \alpha ,\alpha \rangle \!\rangle =\langle \!\langle {\star }\alpha ,{\star }\alpha \rangle \!\rangle }
for
α
∈
Ω
1
(
M
)
{\displaystyle \alpha \in \Omega ^{1}(M)}
( Hodge star preserves
1
{\displaystyle 1}
-form norm )
⋆
1
=
d
e
t
{\displaystyle {\star }\mathbf {1} =\mathbf {det} }
( Hodge dual of constant function 1 is the volume form )
Co-differential operator properties [ edit ]
δ
∘
δ
=
0
{\displaystyle \delta \circ \delta =0}
( nilpotent )
⋆
δ
=
(
−
1
)
k
d
⋆
{\displaystyle {\star }\delta =(-1)^{k}d{\star }}
and
⋆
d
=
(
−
1
)
k
+
1
δ
⋆
{\displaystyle {\star }d=(-1)^{k+1}\delta {\star }}
( Hodge adjoint to
d
{\displaystyle d}
)
⟨
⟨
d
α
,
β
⟩
⟩
=
⟨
⟨
α
,
δ
β
⟩
⟩
{\displaystyle \langle \!\langle d\alpha ,\beta \rangle \!\rangle =\langle \!\langle \alpha ,\delta \beta \rangle \!\rangle }
if
∂
M
=
0
{\displaystyle \partial M=0}
(
δ
{\displaystyle \delta }
adjoint to
d
{\displaystyle d}
)
In general,
∫
M
d
α
∧
⋆
β
=
∫
∂
M
α
∧
⋆
β
+
∫
M
α
∧
⋆
δ
β
{\displaystyle \int _{M}d\alpha \wedge \star \beta =\int _{\partial M}\alpha \wedge \star \beta +\int _{M}\alpha \wedge \star \delta \beta }
δ
f
=
0
{\displaystyle \delta f=0}
for
f
∈
Ω
0
(
M
)
{\displaystyle f\in \Omega ^{0}(M)}
Lie derivative properties [ edit ]
d
∘
L
X
=
L
X
∘
d
{\displaystyle d\circ {\mathcal {L}}_{X}={\mathcal {L}}_{X}\circ d}
( commutative with
d
{\displaystyle d}
)
ι
X
∘
L
X
=
L
X
∘
ι
X
{\displaystyle \iota _{X}\circ {\mathcal {L}}_{X}={\mathcal {L}}_{X}\circ \iota _{X}}
( commutative with
ι
X
{\displaystyle \iota _{X}}
)
L
X
(
ι
Y
α
)
=
ι
[
X
,
Y
]
α
+
ι
Y
L
X
α
{\displaystyle {\mathcal {L}}_{X}(\iota _{Y}\alpha )=\iota _{[X,Y]}\alpha +\iota _{Y}{\mathcal {L}}_{X}\alpha }
L
X
(
α
∧
β
)
=
(
L
X
α
)
∧
β
+
α
∧
(
L
X
β
)
{\displaystyle {\mathcal {L}}_{X}(\alpha \wedge \beta )=({\mathcal {L}}_{X}\alpha )\wedge \beta +\alpha \wedge ({\mathcal {L}}_{X}\beta )}
( Leibniz rule )
Exterior calculus identities [ edit ]
ι
X
(
⋆
1
)
=
⋆
X
♭
{\displaystyle \iota _{X}({\star }\mathbf {1} )={\star }X^{\flat }}
ι
X
(
⋆
α
)
=
(
−
1
)
k
⋆
(
X
♭
∧
α
)
{\displaystyle \iota _{X}({\star }\alpha )=(-1)^{k}{\star }(X^{\flat }\wedge \alpha )}
if
α
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k}(M)}
ι
X
(
ϕ
∗
α
)
=
ϕ
∗
(
ι
d
ϕ
(
X
)
α
)
{\displaystyle \iota _{X}(\phi ^{*}\alpha )=\phi ^{*}(\iota _{d\phi (X)}\alpha )}
ν
,
μ
∈
Ω
n
(
M
)
,
μ
non-zero
⇒
∃
f
∈
Ω
0
(
M
)
:
ν
=
f
μ
{\displaystyle \nu ,\mu \in \Omega ^{n}(M),\mu {\text{ non-zero }}\ \Rightarrow \ \exists \ f\in \Omega ^{0}(M):\ \nu =f\mu }
X
♭
∧
⋆
Y
♭
=
g
(
X
,
Y
)
(
⋆
1
)
{\displaystyle X^{\flat }\wedge {\star }Y^{\flat }=g(X,Y)({\star }\mathbf {1} )}
( bilinear form )
[
X
,
[
Y
,
Z
]
]
+
[
Y
,
[
Z
,
X
]
]
+
[
Z
,
[
X
,
Y
]
]
=
0
{\displaystyle [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0}
( Jacobi identity )
If
n
=
dim
M
{\displaystyle n=\dim M}
dim
Ω
k
(
M
)
=
(
n
k
)
{\displaystyle \dim \Omega ^{k}(M)={\binom {n}{k}}}
for
0
≤
k
≤
n
{\displaystyle 0\leq k\leq n}
dim
Ω
k
(
M
)
=
0
{\displaystyle \dim \Omega ^{k}(M)=0}
for
k
<
0
,
k
>
n
{\displaystyle k<0,\ k>n}
If
X
1
,
…
,
X
n
∈
Γ
(
T
M
)
{\displaystyle X_{1},\ldots ,X_{n}\in \Gamma (TM)}
is a basis, then a basis of
Ω
k
(
M
)
{\displaystyle \Omega ^{k}(M)}
is
{
X
σ
(
1
)
♭
∧
…
∧
X
σ
(
k
)
♭
:
σ
∈
S
(
k
,
n
)
}
{\displaystyle \{X_{\sigma (1)}^{\flat }\wedge \ldots \wedge X_{\sigma (k)}^{\flat }\ :\ \sigma \in S(k,n)\}}
Let
α
,
β
,
γ
,
α
i
∈
Ω
1
(
M
)
{\displaystyle \alpha ,\beta ,\gamma ,\alpha _{i}\in \Omega ^{1}(M)}
and
X
,
Y
,
Z
,
X
i
{\displaystyle X,Y,Z,X_{i}}
be vector fields.
α
(
X
)
=
det
[
α
(
X
)
]
{\displaystyle \alpha (X)=\det {\begin{bmatrix}\alpha (X)\\\end{bmatrix}}}
(
α
∧
β
)
(
X
,
Y
)
=
det
[
α
(
X
)
α
(
Y
)
β
(
X
)
β
(
Y
)
]
{\displaystyle (\alpha \wedge \beta )(X,Y)=\det {\begin{bmatrix}\alpha (X)&\alpha (Y)\\\beta (X)&\beta (Y)\\\end{bmatrix}}}
(
α
∧
β
∧
γ
)
(
X
,
Y
,
Z
)
=
det
[
α
(
X
)
α
(
Y
)
α
(
Z
)
β
(
X
)
β
(
Y
)
β
(
Z
)
γ
(
X
)
γ
(
Y
)
γ
(
Z
)
]
{\displaystyle (\alpha \wedge \beta \wedge \gamma )(X,Y,Z)=\det {\begin{bmatrix}\alpha (X)&\alpha (Y)&\alpha (Z)\\\beta (X)&\beta (Y)&\beta (Z)\\\gamma (X)&\gamma (Y)&\gamma (Z)\end{bmatrix}}}
(
α
1
∧
…
∧
α
l
)
(
X
1
,
…
,
X
l
)
=
det
[
α
1
(
X
1
)
α
1
(
X
2
)
…
α
1
(
X
l
)
α
2
(
X
1
)
α
2
(
X
2
)
…
α
2
(
X
l
)
⋮
⋮
⋱
⋮
α
l
(
X
1
)
α
l
(
X
2
)
…
α
l
(
X
l
)
]
{\displaystyle (\alpha _{1}\wedge \ldots \wedge \alpha _{l})(X_{1},\ldots ,X_{l})=\det {\begin{bmatrix}\alpha _{1}(X_{1})&\alpha _{1}(X_{2})&\dots &\alpha _{1}(X_{l})\\\alpha _{2}(X_{1})&\alpha _{2}(X_{2})&\dots &\alpha _{2}(X_{l})\\\vdots &\vdots &\ddots &\vdots \\\alpha _{l}(X_{1})&\alpha _{l}(X_{2})&\dots &\alpha _{l}(X_{l})\end{bmatrix}}}
Projection and rejection [ edit ]
(
−
1
)
k
ι
X
⋆
α
=
⋆
(
X
♭
∧
α
)
{\displaystyle (-1)^{k}\iota _{X}{\star }\alpha ={\star }(X^{\flat }\wedge \alpha )}
( interior product
ι
X
⋆
{\displaystyle \iota _{X}{\star }}
dual to wedge
X
♭
∧
{\displaystyle X^{\flat }\wedge }
)
(
ι
X
α
)
∧
⋆
β
=
α
∧
⋆
(
X
♭
∧
β
)
{\displaystyle (\iota _{X}\alpha )\wedge {\star }\beta =\alpha \wedge {\star }(X^{\flat }\wedge \beta )}
for
α
∈
Ω
k
+
1
(
M
)
,
β
∈
Ω
k
(
M
)
{\displaystyle \alpha \in \Omega ^{k+1}(M),\beta \in \Omega ^{k}(M)}
If
|
X
|
=
1
,
α
∈
Ω
k
(
M
)
{\displaystyle |X|=1,\ \alpha \in \Omega ^{k}(M)}
, then
ι
X
∘
(
X
♭
∧
)
:
Ω
k
(
M
)
→
Ω
k
(
M
)
{\displaystyle \iota _{X}\circ (X^{\flat }\wedge ):\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)}
is the projection of
α
{\displaystyle \alpha }
onto the orthogonal complement of
X
{\displaystyle X}
.
(
X
♭
∧
)
∘
ι
X
:
Ω
k
(
M
)
→
Ω
k
(
M
)
{\displaystyle (X^{\flat }\wedge )\circ \iota _{X}:\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)}
is the rejection of
α
{\displaystyle \alpha }
, the remainder of the projection.
thus
ι
X
∘
(
X
♭
∧
)
+
(
X
♭
∧
)
∘
ι
X
=
id
{\displaystyle \iota _{X}\circ (X^{\flat }\wedge )+(X^{\flat }\wedge )\circ \iota _{X}={\text{id}}}
( projection–rejection decomposition )
Given the boundary
∂
M
{\displaystyle \partial M}
with unit normal vector
N
{\displaystyle N}
t
:=
ι
N
∘
(
N
♭
∧
)
{\displaystyle \mathbf {t} :=\iota _{N}\circ (N^{\flat }\wedge )}
extracts the tangential component of the boundary.
n
:=
(
id
−
t
)
{\displaystyle \mathbf {n} :=({\text{id}}-\mathbf {t} )}
extracts the normal component of the boundary.
(
d
α
)
(
X
0
,
…
,
X
k
)
=
∑
0
≤
j
≤
k
(
−
1
)
j
d
(
α
(
X
0
,
…
,
X
^
j
,
…
,
X
k
)
)
(
X
j
)
+
∑
0
≤
i
<
j
≤
k
(
−
1
)
i
+
j
α
(
[
X
i
,
X
j
]
,
X
0
,
…
,
X
^
i
,
…
,
X
^
j
,
…
,
X
k
)
{\displaystyle (d\alpha )(X_{0},\ldots ,X_{k})=\sum _{0\leq j\leq k}(-1)^{j}d(\alpha (X_{0},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}))(X_{j})+\sum _{0\leq i<j\leq k}(-1)^{i+j}\alpha ([X_{i},X_{j}],X_{0},\ldots ,{\hat {X}}_{i},\ldots ,{\hat {X}}_{j},\ldots ,X_{k})}
(
d
α
)
(
X
1
,
…
,
X
k
)
=
∑
i
=
1
k
(
−
1
)
i
+
1
(
∇
X
i
α
)
(
X
1
,
…
,
X
^
i
,
…
,
X
k
)
{\displaystyle (d\alpha )(X_{1},\ldots ,X_{k})=\sum _{i=1}^{k}(-1)^{i+1}(\nabla _{X_{i}}\alpha )(X_{1},\ldots ,{\hat {X}}_{i},\ldots ,X_{k})}
(
δ
α
)
(
X
1
,
…
,
X
k
−
1
)
=
−
∑
i
=
1
n
(
ι
E
i
(
∇
E
i
α
)
)
(
X
1
,
…
,
X
^
i
,
…
,
X
k
)
{\displaystyle (\delta \alpha )(X_{1},\ldots ,X_{k-1})=-\sum _{i=1}^{n}(\iota _{E_{i}}(\nabla _{E_{i}}\alpha ))(X_{1},\ldots ,{\hat {X}}_{i},\ldots ,X_{k})}
given a positively oriented orthonormal frame
E
1
,
…
,
E
n
{\displaystyle E_{1},\ldots ,E_{n}}
.
(
L
Y
α
)
(
X
1
,
…
,
X
k
)
=
(
∇
Y
α
)
(
X
1
,
…
,
X
k
)
−
∑
i
=
1
k
α
(
X
1
,
…
,
∇
X
i
Y
,
…
,
X
k
)
{\displaystyle ({\mathcal {L}}_{Y}\alpha )(X_{1},\ldots ,X_{k})=(\nabla _{Y}\alpha )(X_{1},\ldots ,X_{k})-\sum _{i=1}^{k}\alpha (X_{1},\ldots ,\nabla _{X_{i}}Y,\ldots ,X_{k})}
Hodge decomposition [ edit ]
If
∂
M
=
∅
{\displaystyle \partial M=\emptyset }
,
ω
∈
Ω
k
(
M
)
⇒
∃
α
∈
Ω
k
−
1
,
β
∈
Ω
k
+
1
,
γ
∈
Ω
k
(
M
)
,
d
γ
=
0
,
δ
γ
=
0
{\displaystyle \omega \in \Omega ^{k}(M)\Rightarrow \exists \alpha \in \Omega ^{k-1},\ \beta \in \Omega ^{k+1},\ \gamma \in \Omega ^{k}(M),\ d\gamma =0,\ \delta \gamma =0}
such that[citation needed ]
ω
=
d
α
+
δ
β
+
γ
{\displaystyle \omega =d\alpha +\delta \beta +\gamma }
If a boundaryless manifold
M
{\displaystyle M}
has trivial cohomology
H
k
(
M
)
=
{
0
}
{\displaystyle H^{k}(M)=\{0\}}
, then any closed
ω
∈
Ω
k
(
M
)
{\displaystyle \omega \in \Omega ^{k}(M)}
is exact. This is the case if M is contractible .
Relations to vector calculus [ edit ]
Identities in Euclidean 3-space [ edit ]
Let Euclidean metric
g
(
X
,
Y
)
:=
⟨
X
,
Y
⟩
=
X
⋅
Y
{\displaystyle g(X,Y):=\langle X,Y\rangle =X\cdot Y}
.
We use
∇
=
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
{\displaystyle \nabla =\left({\partial \over \partial x},{\partial \over \partial y},{\partial \over \partial z}\right)}
differential operator
R
3
{\displaystyle \mathbb {R} ^{3}}
ι
X
α
=
g
(
X
,
α
♯
)
=
X
⋅
α
♯
{\displaystyle \iota _{X}\alpha =g(X,\alpha ^{\sharp })=X\cdot \alpha ^{\sharp }}
for
α
∈
Ω
1
(
M
)
{\displaystyle \alpha \in \Omega ^{1}(M)}
.
d
e
t
(
X
,
Y
,
Z
)
=
⟨
X
,
Y
×
Z
⟩
=
⟨
X
×
Y
,
Z
⟩
{\displaystyle \mathbf {det} (X,Y,Z)=\langle X,Y\times Z\rangle =\langle X\times Y,Z\rangle }
( scalar triple product )
X
×
Y
=
(
⋆
(
X
♭
∧
Y
♭
)
)
♯
{\displaystyle X\times Y=({\star }(X^{\flat }\wedge Y^{\flat }))^{\sharp }}
( cross product )
ι
X
α
=
−
(
X
×
A
)
♭
{\displaystyle \iota _{X}\alpha =-(X\times A)^{\flat }}
if
α
∈
Ω
2
(
M
)
,
A
=
(
⋆
α
)
♯
{\displaystyle \alpha \in \Omega ^{2}(M),\ A=({\star }\alpha )^{\sharp }}
X
⋅
Y
=
⋆
(
X
♭
∧
⋆
Y
♭
)
{\displaystyle X\cdot Y={\star }(X^{\flat }\wedge {\star }Y^{\flat })}
( scalar product )
∇
f
=
(
d
f
)
♯
{\displaystyle \nabla f=(df)^{\sharp }}
( gradient )
X
⋅
∇
f
=
d
f
(
X
)
{\displaystyle X\cdot \nabla f=df(X)}
( directional derivative )
∇
⋅
X
=
⋆
d
⋆
X
♭
=
−
δ
X
♭
{\displaystyle \nabla \cdot X={\star }d{\star }X^{\flat }=-\delta X^{\flat }}
( divergence )
∇
×
X
=
(
⋆
d
X
♭
)
♯
{\displaystyle \nabla \times X=({\star }dX^{\flat })^{\sharp }}
( curl )
⟨
X
,
N
⟩
σ
=
⋆
X
♭
{\displaystyle \langle X,N\rangle \sigma ={\star }X^{\flat }}
where
N
{\displaystyle N}
is the unit normal vector of
∂
M
{\displaystyle \partial M}
and
σ
=
ι
N
d
e
t
{\displaystyle \sigma =\iota _{N}\mathbf {det} }
is the area form on
∂
M
{\displaystyle \partial M}
.
∫
Σ
d
⋆
X
♭
=
∫
∂
Σ
⋆
X
♭
=
∫
∂
Σ
⟨
X
,
N
⟩
σ
{\displaystyle \int _{\Sigma }d{\star }X^{\flat }=\int _{\partial \Sigma }{\star }X^{\flat }=\int _{\partial \Sigma }\langle X,N\rangle \sigma }
( divergence theorem )
L
X
f
=
X
⋅
∇
f
{\displaystyle {\mathcal {L}}_{X}f=X\cdot \nabla f}
(
0
{\displaystyle 0}
-forms )
L
X
α
=
(
∇
X
α
♯
)
♭
+
g
(
α
♯
,
∇
X
)
{\displaystyle {\mathcal {L}}_{X}\alpha =(\nabla _{X}\alpha ^{\sharp })^{\flat }+g(\alpha ^{\sharp },\nabla X)}
(
1
{\displaystyle 1}
-forms )
⋆
L
X
β
=
(
∇
X
B
−
∇
B
X
+
(
div
X
)
B
)
♭
{\displaystyle {\star }{\mathcal {L}}_{X}\beta =\left(\nabla _{X}B-\nabla _{B}X+({\text{div}}X)B\right)^{\flat }}
if
B
=
(
⋆
β
)
♯
{\displaystyle B=({\star }\beta )^{\sharp }}
(
2
{\displaystyle 2}
-forms on
3
{\displaystyle 3}
-manifolds )
⋆
L
X
ρ
=
d
q
(
X
)
+
(
div
X
)
q
{\displaystyle {\star }{\mathcal {L}}_{X}\rho =dq(X)+({\text{div}}X)q}
if
ρ
=
⋆
q
∈
Ω
0
(
M
)
{\displaystyle \rho ={\star }q\in \Omega ^{0}(M)}
(
n
{\displaystyle n}
-forms )
L
X
(
d
e
t
)
=
(
div
(
X
)
)
d
e
t
{\displaystyle {\mathcal {L}}_{X}(\mathbf {det} )=({\text{div}}(X))\mathbf {det} }
^ Crane, Keenan; de Goes, Fernando; Desbrun, Mathieu; Schröder, Peter (21 July 2013). "Digital geometry processing with discrete exterior calculus". ACM SIGGRAPH 2013 Courses . pp. 1–126. doi :10.1145/2504435.2504442 . ISBN 9781450323390 . S2CID 168676 .
^ Schwarz, Günter (1995). Hodge Decomposition – A Method for Solving Boundary Value Problems . Springer. ISBN 978-3-540-49403-4 .
^ Cartan, Henri (26 May 2006). Differential forms (Dover ed.). Dover Publications. ISBN 978-0486450100 .
^ Bott, Raoul; Tu, Loring W. (16 May 1995). Differential forms in algebraic topology . Springer. ISBN 978-0387906133 .
^ Abraham, Ralph; J.E., Marsden; Ratiu, Tudor (6 December 2012). Manifolds, tensor analysis, and applications (2nd ed.). Springer-Verlag. ISBN 978-1-4612-1029-0 .
^ Jump up to: a b Tu, Loring W. (2011). An introduction to manifolds (2nd ed.). New York: Springer. pp. 34, 233. ISBN 9781441974006 . OCLC 682907530 .