Solar eclipse of February 27, 2082
Solar eclipse of February 27, 2082 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.3361 |
Magnitude | 0.9298 |
Maximum eclipse | |
Duration | 492 s (8 min 12 s) |
Coordinates | 9°24′N 47°06′W / 9.4°N 47.1°W |
Max. width of band | 277 km (172 mi) |
Times (UTC) | |
Greatest eclipse | 14:47:00 |
References | |
Saros | 141 (27 of 70) |
Catalog # (SE5000) | 9691 |
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
Related eclipses
[edit]Eclipses in 2082
[edit]- A partial lunar eclipse on February 13.
- An annular solar eclipse on February 27.
- A penumbral lunar eclipse on August 8.
- A total solar eclipse on August 24.
Metonic
[edit]- Preceded by: Solar eclipse of May 11, 2078
- Followed by: Solar eclipse of December 16, 2085
Tzolkinex
[edit]- Preceded by: Solar eclipse of January 16, 2075
- Followed by: Solar eclipse of April 10, 2089
Half-Saros
[edit]- Preceded by: Lunar eclipse of February 22, 2073
- Followed by: Lunar eclipse of March 5, 2091
Tritos
[edit]- Preceded by: Solar eclipse of March 31, 2071
- Followed by: Solar eclipse of January 27, 2093
Solar Saros 141
[edit]- Preceded by: Solar eclipse of February 17, 2064
- Followed by: Solar eclipse of March 10, 2100
Inex
[edit]- Preceded by: Solar eclipse of March 20, 2053
- Followed by: Solar eclipse of February 8, 2111
Triad
[edit]- Preceded by: Solar eclipse of April 29, 1995
- Followed by: Solar eclipse of December 29, 2168
Solar eclipses of 2080–2083
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
The partial solar eclipse on July 15, 2083 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 2080 to 2083 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 | March 21, 2080![]() Partial |
−1.0578 | 126 | September 13, 2080![]() Partial |
1.0723 | |
131 | March 10, 2081![]() Annular |
−0.3653 | 136 | September 3, 2081![]() Total |
0.3378 | |
141 | February 27, 2082![]() Annular |
0.3361 | 146 | August 24, 2082![]() Total |
−0.4004 | |
151 | February 16, 2083![]() Partial |
1.017 | 156 | August 13, 2083![]() Partial |
−1.2064 |
Saros 141
[edit]This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]
Series members 12–33 occur between 1801 and 2200: | ||
---|---|---|
12 | 13 | 14 |
![]() September 17, 1811 |
![]() September 28, 1829 |
![]() October 9, 1847 |
15 | 16 | 17 |
![]() October 19, 1865 |
![]() October 30, 1883 |
![]() November 11, 1901 |
18 | 19 | 20 |
![]() November 22, 1919 |
![]() December 2, 1937 |
![]() December 14, 1955 |
21 | 22 | 23 |
![]() December 24, 1973 |
![]() January 4, 1992 |
![]() January 15, 2010 |
24 | 25 | 26 |
![]() January 26, 2028 |
![]() February 5, 2046 |
![]() February 17, 2064 |
27 | 28 | 29 |
![]() February 27, 2082 |
![]() March 10, 2100 |
![]() March 22, 2118 |
30 | 31 | 32 |
![]() April 1, 2136 |
![]() April 12, 2154 |
![]() April 23, 2172 |
33 | ||
![]() May 4, 2190 |
Metonic series
[edit]The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 23, 2036 and July 23, 2112 | ||||
---|---|---|---|---|
July 23–24 | May 11 | February 27–28 | December 16–17 | October 4–5 |
117 | 119 | 121 | 123 | 125 |
![]() July 23, 2036 |
![]() May 11, 2040 |
![]() February 28, 2044 |
![]() December 16, 2047 |
![]() October 4, 2051 |
127 | 129 | 131 | 133 | 135 |
![]() July 24, 2055 |
![]() May 11, 2059 |
![]() February 28, 2063 |
![]() December 17, 2066 |
![]() October 4, 2070 |
137 | 139 | 141 | 143 | 145 |
![]() July 24, 2074 |
![]() May 11, 2078 |
![]() February 27, 2082 |
![]() December 16, 2085 |
![]() October 4, 2089 |
147 | 149 | 151 | 153 | 155 |
![]() July 23, 2093 |
![]() May 11, 2097 |
![]() February 28, 2101 |
![]() December 17, 2104 |
![]() October 5, 2108 |
157 | ||||
![]() July 23, 2112 |
Tritos series
[edit]This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
![]() April 14, 1809 (Saros 116) |
![]() March 14, 1820 (Saros 117) |
![]() February 12, 1831 (Saros 118) |
![]() January 11, 1842 (Saros 119) |
![]() December 11, 1852 (Saros 120) |
![]() November 11, 1863 (Saros 121) |
![]() October 10, 1874 (Saros 122) |
![]() September 8, 1885 (Saros 123) |
![]() August 9, 1896 (Saros 124) |
![]() July 10, 1907 (Saros 125) |
![]() June 8, 1918 (Saros 126) |
![]() May 9, 1929 (Saros 127) |
![]() April 7, 1940 (Saros 128) |
![]() March 7, 1951 (Saros 129) |
![]() February 5, 1962 (Saros 130) |
![]() January 4, 1973 (Saros 131) |
![]() December 4, 1983 (Saros 132) |
![]() November 3, 1994 (Saros 133) |
![]() October 3, 2005 (Saros 134) |
![]() September 1, 2016 (Saros 135) |
![]() August 2, 2027 (Saros 136) |
![]() July 2, 2038 (Saros 137) |
![]() May 31, 2049 (Saros 138) |
![]() April 30, 2060 (Saros 139) |
![]() March 31, 2071 (Saros 140) |
![]() February 27, 2082 (Saros 141) |
![]() January 27, 2093 (Saros 142) |
![]() December 29, 2103 (Saros 143) |
![]() November 27, 2114 (Saros 144) |
![]() October 26, 2125 (Saros 145) |
![]() September 26, 2136 (Saros 146) |
![]() August 26, 2147 (Saros 147) |
![]() July 25, 2158 (Saros 148) |
![]() June 25, 2169 (Saros 149) |
![]() May 24, 2180 (Saros 150) |
![]() April 23, 2191 (Saros 151) |
Inex series
[edit]This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
![]() August 27, 1821 (Saros 132) |
![]() August 7, 1850 (Saros 133) |
![]() July 19, 1879 (Saros 134) |
![]() June 28, 1908 (Saros 135) |
![]() June 8, 1937 (Saros 136) |
![]() May 20, 1966 (Saros 137) |
![]() April 29, 1995 (Saros 138) |
![]() April 8, 2024 (Saros 139) |
![]() March 20, 2053 (Saros 140) |
![]() February 27, 2082 (Saros 141) |
![]() February 8, 2111 (Saros 142) |
![]() January 20, 2140 (Saros 143) |
![]() December 29, 2168 (Saros 144) |
![]() December 9, 2197 (Saros 145) |
Notes
[edit]- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.
References
[edit]- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC