In mathematics, a profinite integer is an element of the ring (sometimes pronounced as zee-hat or zed-hat)

where the inverse limit

indicates the profinite completion of
, the index
runs over all prime numbers, and
is the ring of p-adic integers. This group is important because of its relation to Galois theory, étale homotopy theory, and the ring of adeles. In addition, it provides a basic tractable example of a profinite group.
Construction[edit]
The profinite integers
can be constructed as the set of sequences
of residues represented as

such that

.
Pointwise addition and multiplication make it a commutative ring.
The ring of integers embeds into the ring of profinite integers by the canonical injection:

where

It is canonical since it satisfies the
universal property of profinite groups that, given any profinite group

and any group homomorphism

, there exists a unique
continuous group homomorphism

with

.
Using Factorial number system[edit]
Every integer
has a unique representation in the factorial number system as

where

for every

, and only finitely many of

are nonzero.
Its factorial number representation can be written as
.
In the same way, a profinite integer can be uniquely represented in the factorial number system as an infinite string
, where each
is an integer satisfying
.[1]
The digits
determine the value of the profinite integer mod
. More specifically, there is a ring homomorphism
sending

The difference of a profinite integer from an integer is that the "finitely many nonzero digits" condition is dropped, allowing for its factorial number representation to have infinitely many nonzero digits.
Using the Chinese Remainder theorem[edit]
Another way to understand the construction of the profinite integers is by using the Chinese remainder theorem. Recall that for an integer
with prime factorization

of non-repeating primes, there is a
ring isomorphism

from the theorem. Moreover, any
surjection

will just be a map on the underlying decompositions where there are induced surjections

since we must have

. It should be much clearer that under the inverse limit definition of the profinite integers, we have the isomorphism

with the direct product of
p-adic integers.
Explicitly, the isomorphism is
by

where

ranges over all prime-power factors

of

, that is,

for some different prime numbers

.
Relations[edit]
Topological properties[edit]
The set of profinite integers has an induced topology in which it is a compact Hausdorff space, coming from the fact that it can be seen as a closed subset of the infinite direct product

which is compact with its
product topology by
Tychonoff's theorem. Note the topology on each finite group

is given as the
discrete topology.
The topology on
can be defined by the metric,[1]

Since addition of profinite integers is continuous,
is a compact Hausdorff abelian group, and thus its Pontryagin dual must be a discrete abelian group.
In fact, the Pontryagin dual of
is the abelian group
equipped with the discrete topology (note that it is not the subset topology inherited from
, which is not discrete). The Pontryagin dual is explicitly constructed by the function[2]

where

is the character of the adele (introduced below)

induced by

.
[3]
Relation with adeles[edit]
The tensor product
is the ring of finite adeles

of

where the symbol

means
restricted product. That is, an element is a sequence that is integral except at a finite number of places.
[4] There is an isomorphism

Applications in Galois theory and Etale homotopy theory[edit]
For the algebraic closure
of a finite field
of order q, the Galois group can be computed explicitly. From the fact
where the automorphisms are given by the Frobenius endomorphism, the Galois group of the algebraic closure of
is given by the inverse limit of the groups
, so its Galois group is isomorphic to the group of profinite integers[5]

which gives a computation of the
absolute Galois group of a finite field.
Relation with Etale fundamental groups of algebraic tori[edit]
This construction can be re-interpreted in many ways. One of them is from Etale homotopy theory which defines the Etale fundamental group
as the profinite completion of automorphisms

where

is an
Etale cover. Then, the profinite integers are isomorphic to the group

from the earlier computation of the profinite Galois group. In addition, there is an embedding of the profinite integers inside the Etale fundamental group of the
algebraic torus

since the covering maps come from the
polynomial maps

from the map of
commutative rings
![{\displaystyle f:\mathbb {Z} [x,x^{-1}]\to \mathbb {Z} [x,x^{-1}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a285de37cb2ef3aeb20609fc6c797d04a7d9ae7)
sending

since
![{\displaystyle \mathbb {G} _{m}={\text{Spec}}(\mathbb {Z} [x,x^{-1}])}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dcdb2711b0c19dd71924b6ad6118609e5f1bf231)
. If the algebraic torus is considered over a field

, then the Etale fundamental group

contains an action of

as well from the
fundamental exact sequence in etale homotopy theory.
Class field theory and the profinite integers[edit]
Class field theory is a branch of algebraic number theory studying the abelian field extensions of a field. Given the global field
, the abelianization of its absolute Galois group

is intimately related to the associated ring of adeles

and the group of profinite integers. In particular, there is a map, called the
Artin map[6]

which is an isomorphism. This quotient can be determined explicitly as

giving the desired relation. There is an analogous statement for local class field theory since every finite abelian extension of
is induced from a finite field extension
.
See also[edit]
References[edit]
External links[edit]