Isotopes of dysprosium
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Dy) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring dysprosium (66Dy) is composed of 7 stable isotopes, 156Dy, 158Dy, 160Dy, 161Dy, 162Dy, 163Dy and 164Dy, with 164Dy being the most abundant (28.18% natural abundance). Twenty-nine radioisotopes have been characterized, with the most stable being 154Dy with a half-life of 1.4 million years, 159Dy with a half-life of 144.4 days, and 166Dy with a half-life of 81.6 hours. All of the remaining radioactive isotopes have half-lives that are less than 10 hours, and the majority of these have half-lives that are less than 30 seconds. This element also has 12 meta states, with the most stable being 165mDy (half-life 1.257 minutes), 147mDy (half-life 55.7 seconds) and 145mDy (half-life 13.6 seconds).
The primary decay mode before the most abundant stable isotope, 164Dy, is electron capture, and the primary mode after is beta decay. The primary decay products before 164Dy are terbium isotopes, and the primary products after are holmium isotopes. Dysprosium is the heaviest element to have isotopes that are predicted to be stable rather than observationally stable isotopes that are predicted to be radioactive.
List of isotopes
[edit]Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
138Dy | 66 | 72 | 137.96249(64)# | 200# ms | 0+ | ||||||||||||||
139Dy | 66 | 73 | 138.95954(54)# | 600(200) ms | 7/2+# | ||||||||||||||
140Dy | 66 | 74 | 139.95401(54)# | 700# ms | β+ | 140Tb | 0+ | ||||||||||||
140mDy | 2166.1(5) keV | 7.0(5) μs | (8−) | ||||||||||||||||
141Dy | 66 | 75 | 140.95135(32)# | 0.9(2) s | β+ | 141Tb | (9/2−) | ||||||||||||
β+, p (rare) | 140Gd | ||||||||||||||||||
142Dy | 66 | 76 | 141.94637(39)# | 2.3(3) s | β+ (90(4)%) | 142Tb | 0+ | ||||||||||||
EC (10(4)%) | |||||||||||||||||||
β+, p (.06%) | 141Gd | ||||||||||||||||||
143Dy | 66 | 77 | 142.94383(21)# | 5.6(10) s | β+ | 143Tb | (1/2+) | ||||||||||||
β+, p (rare) | 142Gd | ||||||||||||||||||
143mDy | 310.7(6) keV | 3.0(3) s | (11/2−) | ||||||||||||||||
144Dy | 66 | 78 | 143.93925(3) | 9.1(4) s | β+ | 144Tb | 0+ | ||||||||||||
β+, p (rare) | 143Gd | ||||||||||||||||||
145Dy | 66 | 79 | 144.93743(5) | 9.5(10) s | β+ | 145Tb | (1/2+) | ||||||||||||
β+, p (rare) | 144Gd | ||||||||||||||||||
145mDy | 118.2(2) keV | 14.1(7) s | β+ | 145Tb | (11/2−) | ||||||||||||||
146Dy | 66 | 80 | 145.932845(29) | 33.2(7) s | β+ | 146Tb | 0+ | ||||||||||||
146mDy | 2935.7(6) keV | 150(20) ms | IT | 146Dy | (10+)# | ||||||||||||||
147Dy | 66 | 81 | 146.931092(21) | 40(10) s | β+ (99.95%) | 147Tb | 1/2+ | ||||||||||||
β+, p (.05%) | 146Tb | ||||||||||||||||||
147m1Dy | 750.5(4) keV | 55(1) s | β+ (65%) | 147Tb | 11/2− | ||||||||||||||
IT (35%) | 147Dy | ||||||||||||||||||
147m2Dy | 3407.2(8) keV | 0.40(1) μs | (27/2−) | ||||||||||||||||
148Dy | 66 | 82 | 147.927150(11) | 3.3(2) min | β+ | 148Tb | 0+ | ||||||||||||
149Dy | 66 | 83 | 148.927305(9) | 4.20(14) min | β+ | 149Tb | 7/2(−) | ||||||||||||
149mDy | 2661.1(4) keV | 490(15) ms | IT (99.3%) | 149Dy | (27/2−) | ||||||||||||||
β+ (.7%) | 149Tb | ||||||||||||||||||
150Dy | 66 | 84 | 149.925585(5) | 7.17(5) min | β+ (64%) | 150Tb | 0+ | ||||||||||||
α (36%) | 146Gd | ||||||||||||||||||
151Dy | 66 | 85 | 150.926185(4) | 17.9(3) min | β+ (94.4%) | 151Tb | 7/2(−) | ||||||||||||
α (5.6%) | 147Gd | ||||||||||||||||||
152Dy | 66 | 86 | 151.924718(6) | 2.38(2) h | EC (99.9%) | 152Tb | 0+ | ||||||||||||
α (.1%) | 148Gd | ||||||||||||||||||
153Dy | 66 | 87 | 152.925765(5) | 6.4(1) h | β+ (99.99%) | 153Tb | 7/2(−) | ||||||||||||
α (.00939%) | 149Gd | ||||||||||||||||||
154Dy | 66 | 88 | 153.924424(8) | 1.40(8)×106 y[5] | α[n 8] | 150Gd | 0+ | ||||||||||||
155Dy | 66 | 89 | 154.925754(13) | 9.9(2) h | β+ | 155Tb | 3/2− | ||||||||||||
155mDy | 234.33(3) keV | 6(1) μs | 11/2− | ||||||||||||||||
156Dy | 66 | 90 | 155.924283(7) | Observationally Stable[n 9] | 0+ | 5.6(3)×10−4 | |||||||||||||
157Dy | 66 | 91 | 156.925466(7) | 8.14(4) h | β+ | 157Tb | 3/2− | ||||||||||||
157m1Dy | 161.99(3) keV | 1.3(2) μs | 9/2+ | ||||||||||||||||
157m2Dy | 199.38(7) keV | 21.6(16) ms | IT | 157Dy | 11/2− | ||||||||||||||
158Dy | 66 | 92 | 157.924409(4) | Observationally Stable[n 10] | 0+ | 9.5(3)×10−4 | |||||||||||||
159Dy | 66 | 93 | 158.9257392(29) | 144.4(2) d | EC | 159Tb | 3/2− | ||||||||||||
159mDy | 352.77(14) keV | 122(3) μs | 11/2− | ||||||||||||||||
160Dy | 66 | 94 | 159.9251975(27) | Observationally Stable[n 11] | 0+ | 0.02329(18) | |||||||||||||
161Dy | 66 | 95 | 160.9269334(27) | Observationally Stable[n 12] | 5/2+ | 0.18889(42) | |||||||||||||
162Dy | 66 | 96 | 161.9267984(27) | Observationally Stable[n 13] | 0+ | 0.25475(36) | |||||||||||||
163Dy | 66 | 97 | 162.9287312(27) | Stable[n 14][6] | 5/2− | 0.24896(42) | |||||||||||||
164Dy[n 15] | 66 | 98 | 163.9291748(27) | Stable | 0+ | 0.28260(54) | |||||||||||||
165Dy | 66 | 99 | 164.9317033(27) | 2.334(1) h | β− | 165Ho | 7/2+ | ||||||||||||
165mDy | 108.160(3) keV | 1.257(6) min | IT (97.76%) | 165Dy | 1/2− | ||||||||||||||
β− (2.24%) | 165Ho | ||||||||||||||||||
166Dy | 66 | 100 | 165.9328067(28) | 81.6(1) h | β− | 166Ho | 0+ | ||||||||||||
167Dy | 66 | 101 | 166.93566(6) | 6.20(8) min | β− | 167Ho | (1/2−) | ||||||||||||
168Dy | 66 | 102 | 167.93713(15) | 8.7(3) min | β− | 168Ho | 0+ | ||||||||||||
169Dy | 66 | 103 | 168.94031(32) | 39(8) s | β− | 169Ho | (5/2−) | ||||||||||||
170Dy | 66 | 104 | 169.94239(21)# | 30# s | β− | 170Ho | 0+ | ||||||||||||
171Dy | 66 | 105 | 170.94620(32)# | 6# s | β− | 171Ho | 7/2−# | ||||||||||||
172Dy | 66 | 106 | 171.94876(43)# | 3# s | β− | 172Ho | 0+ | ||||||||||||
173Dy | 66 | 107 | 172.95300(54)# | 2# s | β− | 173Ho | 9/2+# | ||||||||||||
This table header & footer: |
- ^ mDy – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture IT: Isomeric transition
p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Theorized to also undergo β+β+ decay to 154Gd
- ^ Believed to undergo α decay to 152Gd or β+β+ decay to 156Gd with a half-life over 1018 years
- ^ Believed to undergo α decay to 154Gd or β+β+ decay to 158Gd
- ^ Believed to undergo α decay to 156Gd
- ^ Believed to undergo α decay to 157Gd
- ^ Believed to undergo α decay to 158Gd
- ^ Can undergo bound-state β− decay to 163Ho with a half-life of 47 days when fully ionized
- ^ Heaviest theoretically stable nuclide
- Geologically exceptional samples are found associated with the Oklo natural nuclear fission reactor, in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
Dysprosium-165
[edit]The radioactive isotope 165Dy, with a half-life of 2.334 hours, has radiopharmaceutical uses in radiation synovectomy of the knee. It had been previously performed with colloidal-sized particles containing longer-lived isotopes such as 198Au and 90Y. The major problem with the usage of those isotopes was radiation leakage out of the knee. 165Dy, with its shorter half-life and thus shorter period of potential radiation leakage, is more suitable for the procedure.[7]
References
[edit]- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC. doi:10.1038/s41598-022-12684-6. ISSN 2045-2322.
- ^ "Standard Atomic Weights: Dysprosium". CIAAW. 2001.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC: 8988. Bibcode:2022NatSR..12.8988C. doi:10.1038/s41598-022-12684-6. ISSN 2045-2322. PMC 9148308. PMID 35643721.
- ^ M. Jung; et al. (1992-10-12). "First observation of bound-state β− decay". Physical Review Letters. 69 (15): 2164–2167. Bibcode:1992PhRvL..69.2164J. doi:10.1103/PhysRevLett.69.2164. PMID 10046415.
- ^ Hnatowich, D. J.; Kramer, R. I.; Sledge, C. B.; Noble, J.; Shortkroff, S. (1978-03-01). "Dysprosium-165 ferric hydroxide macroaggregates for radiation synovectomy. [Rabbits]". J. Nucl. Med.; (United States). 19 (3). OSTI 5045140.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.