Jump to content

Quasinorm

From Wikipedia, the free encyclopedia
(Redirected from Quasi-seminorm)

In linear algebra, functional analysis and related areas of mathematics, a quasinorm is similar to a norm in that it satisfies the norm axioms, except that the triangle inequality is replaced by for some

Definition

[edit]

A quasi-seminorm[1] on a vector space is a real-valued map on that satisfies the following conditions:

  1. Non-negativity:
  2. Absolute homogeneity: for all and all scalars
  3. there exists a real such that for all
    • If then this inequality reduces to the triangle inequality. It is in this sense that this condition generalizes the usual triangle inequality.

A quasinorm[1] is a quasi-seminorm that also satisfies:

  1. Positive definite/Point-separating: if satisfies then

A pair consisting of a vector space and an associated quasi-seminorm is called a quasi-seminormed vector space. If the quasi-seminorm is a quasinorm then it is also called a quasinormed vector space.

Multiplier

The infimum of all values of that satisfy condition (3) is called the multiplier of The multiplier itself will also satisfy condition (3) and so it is the unique smallest real number that satisfies this condition. The term -quasi-seminorm is sometimes used to describe a quasi-seminorm whose multiplier is equal to

A norm (respectively, a seminorm) is just a quasinorm (respectively, a quasi-seminorm) whose multiplier is Thus every seminorm is a quasi-seminorm and every norm is a quasinorm (and a quasi-seminorm).

Topology

[edit]

If is a quasinorm on then induces a vector topology on whose neighborhood basis at the origin is given by the sets:[2] as ranges over the positive integers. A topological vector space with such a topology is called a quasinormed topological vector space or just a quasinormed space.

Every quasinormed topological vector space is pseudometrizable.

A complete quasinormed space is called a quasi-Banach space. Every Banach space is a quasi-Banach space, although not conversely.

[edit]

A quasinormed space is called a quasinormed algebra if the vector space is an algebra and there is a constant such that for all

A complete quasinormed algebra is called a quasi-Banach algebra.

Characterizations

[edit]

A topological vector space (TVS) is a quasinormed space if and only if it has a bounded neighborhood of the origin.[2]

Examples

[edit]

Since every norm is a quasinorm, every normed space is also a quasinormed space.

spaces with

The spaces for are quasinormed spaces (indeed, they are even F-spaces) but they are not, in general, normable (meaning that there might not exist any norm that defines their topology). For the Lebesgue space is a complete metrizable TVS (an F-space) that is not locally convex (in fact, its only convex open subsets are itself and the empty set) and the only continuous linear functional on is the constant function (Rudin 1991, §1.47). In particular, the Hahn-Banach theorem does not hold for when

See also

[edit]
  • Metrizable topological vector space – A topological vector space whose topology can be defined by a metric
  • Norm (mathematics) – Length in a vector space
  • Seminorm – nonnegative-real-valued function on a real or complex vector space that satisfies the triangle inequality and is absolutely homogenous
  • Topological vector space – Vector space with a notion of nearness

References

[edit]
  1. ^ Jump up to: a b Kalton 1986, pp. 297–324.
  2. ^ Jump up to: a b Wilansky 2013, p. 55.
  • Aull, Charles E.; Robert Lowen (2001). Handbook of the History of General Topology. Springer. ISBN 0-7923-6970-X.
  • Conway, John B. (1990). A Course in Functional Analysis. Springer. ISBN 0-387-97245-5.
  • Kalton, N. (1986). "Plurisubharmonic functions on quasi-Banach spaces" (PDF). Studia Mathematica. 84 (3). Institute of Mathematics, Polish Academy of Sciences: 297–324. doi:10.4064/sm-84-3-297-324. ISSN 0039-3223.
  • Nikolʹskiĭ, Nikolaĭ Kapitonovich (1992). Functional Analysis I: Linear Functional Analysis. Encyclopaedia of Mathematical Sciences. Vol. 19. Springer. ISBN 3-540-50584-9.
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
  • Swartz, Charles (1992). An Introduction to Functional Analysis. CRC Press. ISBN 0-8247-8643-2.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.