Jump to content

Electrical wiring

From Wikipedia, the free encyclopedia
(Redirected from Non-metallic sheathed cable)

Electrical symbols for wiring[vague]

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

Wiring is subject to safety standards for design and installation. Allowable wire and cable types and sizes are specified according to the circuit operating voltage and electric current capability, with further restrictions on the environmental conditions, such as ambient temperature range, moisture levels, and exposure to sunlight and chemicals.

Associated circuit protection, control, and distribution devices within a building's wiring system are subject to voltage, current, and functional specifications. Wiring safety codes vary by locality, country, or region. The International Electrotechnical Commission (IEC) is attempting to harmonise wiring standards among member countries, but significant variations in design and installation requirements still exist.

Wiring codes of practice and regulations

[edit]
Wiring layout plan for a house

Wiring installation codes and regulations are intended to protect people and property from electrical shock and fire hazards. They are usually based on a model code (with or without local amendments) produced by a national or international standards organisation, such as the IEC.

Australia and New Zealand

[edit]

In Australia and New Zealand, the AS/NZS 3000 standard, commonly known as the "wiring rules", specifies requirements for the selection and installation of electrical equipment, and the design and testing of such installations. The standard is mandatory in both New Zealand and Australia; therefore, all electrical work covered by the standard must comply.

Europe

[edit]

In European countries, an attempt has been made to harmonise national wiring standards in an IEC standard, IEC 60364 Electrical Installations for Buildings. Hence national standards follow an identical system of sections and chapters. However, this standard is not written in such language that it can readily be adopted as a national wiring code. Neither is it designed for field use by electrical tradespeople and inspectors for testing compliance with national wiring standards. By contrast, national codes, such as the NEC or CSA C22.1, generally exemplify the common objectives of IEC 60364, but provide specific rules in a form that allows for guidance of those installing and inspecting electrical systems.

Germany

[edit]

The VDE is the organisation responsible for the promulgation of electrical standards and safety specifications. DIN VDE 0100 is the German wiring regulations document harmonised with IEC 60364. In Germany, blue can also mean phase or switched phase.

United Kingdom

[edit]

In the United Kingdom, wiring installations are regulated by the Institution of Engineering and Technology Requirements for Electrical Installations: IEE Wiring Regulations, BS 7671: 2008, which are harmonised with IEC 60364. The 17th edition (issued in January 2008) included new sections for microgeneration and solar photovoltaic systems. The first edition was published in 1882. In 2018, the 18th edition of the wiring regulations BS7671:2018 was released and came into force in January 2019 and BS7671:2018 Amendment 2 was issued March 2022. BS 7671 is the standard to which the UK electrical industry adheres, and compliance with BS 7671 is now required by law through the Electricity, Safety, Quality and Continuity Regulations 2002.

North America

[edit]

The first electrical codes in the United States originated in New York in 1881 to regulate installations of electric lighting. Since 1897 the US National Fire Protection Association, a private non-profit association formed by insurance companies, has published the National Electrical Code (NEC). States, counties or cities often include the NEC in their local building codes by reference along with local differences. The NEC is modified every three years. It is a consensus code considering suggestions from interested parties. The proposals are studied by committees of engineers, tradesmen, manufacturer representatives, fire fighters, and other invitees.

Since 1927, the Canadian Standards Association (CSA) has produced the Canadian Safety Standard for Electrical Installations, which is the basis for provincial electrical codes. The CSA also produces the Canadian Electrical Code, the 2006 edition of which references IEC 60364 (Electrical Installations for Buildings) and states that the code addresses the fundamental principles of electrical protection in Section 131. The Canadian code reprints Chapter 13 of IEC 60364, but there are no numerical criteria listed in that chapter to assess the adequacy of any electrical installation.

Although the US and Canadian national standards deal with the same physical phenomena and broadly similar objectives, they differ occasionally in technical detail. As part of the North American Free Trade Agreement (NAFTA) program, US and Canadian standards are slowly converging toward each other, in a process known as harmonisation.

Colour coding of wiring by region

[edit]

Colour-coded wires in a flexible plastic electrical conduit found commonly in modern European houses

In a typical electrical code, some colour-coding of wires is mandatory. Many local rules and exceptions exist per country, state, or region.[1] Older installations vary in colour codes, and colours may fade with insulation exposure to heat, light, and aging.

Europe

[edit]

From 1970 European countries started a process of harmonising their wiring colours, as several countries had chosen the same colour to denote different wires. The new harmonised colours were chosen mainly because no country had used them. Colours like pink, orange and turquoise were not available as they were deemed to be too close to other colours. Even so, there were unavoidable clashes. Blue was a phase conductor in the United Kingdom and Ireland, which delayed the adoption of the new colours for several decades. But flexible cable was changed pretty much instantly following pressure from manufacturers of appliances.[2][3]

Pre-harmonised European colours

[edit]
Pre-harmonised single-phase colours by country
Country Line (L) Neutral (N) Protective earth (PE)
 United Kingdom[2]
 Ireland
 Denmark[4]
 Sweden[5]
(L & N Interchangeable)
 West Germany[2][6][7]
 Austria[2]
 France[3]
 Netherlands
 Belgium[3]

 Switzerland
 Poland[8]
 Italy[2]
 Former Soviet Union[9][3]
CENELEC affiliated countries

As of March 2011, the European Committee for Electrotechnical Standardization (CENELEC) requires the use of green/yellow colour cables as protective conductors, blue as neutral conductors and brown as single-phase conductors.[10]

Harmonised single-phase colours
Line (L) Neutral (N) Protective earth (PE)

Sweden

[edit]

In Sweden, IEC 60364 is implemented through the national standard SS-436 40 000. Notable is the exception for blue, where while the colour normally is used for neutral may be used as connecting wire between switches and between switch and fixture, as well as phase wire in a two-phase circuit, all under the condition that no neutral wire is used in the particular circuit.[11][12]

United Kingdom

[edit]

The United Kingdom requires the use of wire covered with green/yellow striped insulation, for safety earthing (grounding) connections.[13] This growing international standard was adopted for its distinctive appearance, to reduce the likelihood of dangerous confusion of safety earthing (grounding) wires with other electrical functions, especially by persons affected by red–green colour blindness.

In 2004, the UK adopted the European Union standard for phase colours of brown, black, and grey, and for neutral, blue. However, the old phase colours of red, yellow, and blue with black for neutral are still found in old installations. Single-phase wiring should strictly be in brown (red in old system), regardless of which phase it originated from, but it is common practice to use three-core cable in the three-phase colours for two-way lighting switches. The accepted practice is to sleeve the ends of the cores in brown or blue sleeves as appropriate.[14]

United States

[edit]

The United States National Electrical Code requires a bare copper, or green or green/yellow insulated protective conductor, a white or grey neutral, with any other colour used for single phase. The NEC also requires the high-leg conductor of a high-leg delta system to have orange insulation, or to be identified by other suitable means such as tagging. Prior to the adoption of orange as the suggested colour for the high-leg in the 1971 NEC, it was common practice in some areas to use red for this purpose.[15]

The introduction of the NEC clearly states that it is not intended to be a design manual, and therefore creating a colour code for ungrounded or "hot" conductors falls outside the scope and purpose of the NEC. However, it is a common misconception that "hot" conductor colour-coding is required by the Code.

In the United States, colour-coding of three-phase system conductors follows a de facto standard, wherein black, red, and blue are used for three-phase 120/208-volt systems, and brown, orange or violet, and yellow are used in 277/480-volt systems. (Violet avoids conflict with the NEC's high-leg delta rule.) In buildings with multiple voltage systems, the grounded conductors (neutrals) of both systems are required to be separately identified and made distinguishable to avoid cross-system connections. Most often, 120/208-volt systems use white insulation, while 277/480-volt systems use grey insulation, although this particular colour code is not currently an explicit requirement of the NEC.[16] Some local jurisdictions do specify required colour coding in their local building codes, however.

Color codes

[edit]
Standard[a] wire insulation colours for alternating current
Standard
Region or country
Phases (L, L1/L2/L3) Neutral (N) Protective earth/ground (PE)
IEC 60446 (now part of IEC 60445)
  • European Union from April 2004
  • United Kingdom from April 2004 (BS 7671)
  • Switzerland from 2005
  • Argentina
  • Hong Kong from July 2007
  • Singapore from March 2009
  • Russia from 2009 (GOST R 50462)
  • Ukraine, Belarus, Kazakhstan
  • South Korea from January 2021[17]
  • Australia and New Zealand[b]
  • Italy
Brown Black Grey[18]Prohibited: Green/Yellow Light Blue[c]

Dark Blue[19]

Green/Yellow
AS/NZS 3000:2018
  • Australia and New Zealand[b]
Installation wiring: (section 3.8.1)

Red Brown recommended for single phase
Red White Dark Blue[d] recommended for multiphase
While light blue is prohibited from use for active function, dark blue is recommended for L3.
White usually used for "Switched Line" [20]

To designate any phase, the below colours are prohibited:

Green/Yellow Green Yellow Light Blue[d] Black

Black

Light Blue[e]

Green/Yellow
Green (before 1980)
Bare copper (before 1966)
Cable identification colours:[f] (section 3.8.3.4)
Multiphase cables
Red White Dark Blue[d] Current AS/NZS cables


Black


Green/Yellow
Brown Black Grey European cables Light Blue Green/Yellow
Single-phase cables
Brown Current AS/NZS flexible cords, flexible cables and equipment wiring, and European cables

Light Blue

Green/Yellow
Red Superseded AS/NZS flexible cords Black Green
Pre-2004 IEE[further explanation needed]
  • United Kingdom until April 2006 (BS 7671)
  • India, Pakistan
  • Hong Kong prior to 2009
  • Malaysia and Singapore prior to February 2011
Red Yellow Blue Black Green/Yellow
Green (before 1977)
ABNT NBR 5410
  • Brazil
Local rules may specify colours to be used for phases.

To designate any phase, the below colours are prohibited: Green/Yellow Green Yellow[g]

Blue Yellow
Green
SABS SANS 10142-1
  • South Africa
To designate any phase, the below colours are prohibited:

Yellow Green Black

Black Green/Yellow
Bare copper
GB 50303-2015
  • China (PRC)
Yellow Green Red Light Blue Yellow
JIS C 0446
  • Japan
Red Black Blue

See ja:識別標識 (電線) for details

White Green
NEC (NFPA 70)
  • United States[h]
  • Mexico (NOM-001)
  • Puerto Rico, Guatemala, Nicaragua,
    El Salvador, Honduras, Costa Rica,
    Panama, Dominican Republic, Colombia,
    Ecuador, Peru, Venezuela[21]
120, 208, or 240 V
Black Red Blue

277, or 480 V
Brown Orange Yellow
  metallic brass

120, 208, or 240 V
White

277, or 480 V
Grey
  metallic silver

Green  
Bare copper no insulation
Green/Yellow for isolated systems
Flexible cable (e.g., extension, power, and lamp cords)

120 V
Black   metallic brass

split-phase 240 V
Black Red

White
  metallic silver
Green 
Green/Yellow     
CE Code (CSA C22.1) Red Black for single-phase systems

Red Black Blue for three-phase systems

White
Grey
Green 
Green/Yellow
Bare copper no insulation
Orange Brown for isolated single-phase systems

Orange Brown Yellow for isolated three-phase systems

Green
Yellow for isolated systems
Boxes (e.g.,   translucent purple) denote markings on wiring terminals.
  1. ^ The colors in this table represent the most common and preferred standard colors for wiring; however others may be in use, especially in older installations.
  2. ^ a b Australian and New Zealand wiring standards allow both Australian and European color codes.
  3. ^ Sweden allow the use of blue for other purposes in circuits without a neutral, for instance two-phase with ground.
  4. ^ a b c Australian-standard phase colors conflict with IEC 60446 colors, where IEC-60446 supported neutral color (blue) is an allowed phase color in the Australia/New Zealand standard. Care must be taken when determining the system used in any existing wiring.
  5. ^ Use of light blue for Neutral may cause confusion with dark blue for L3. In New Zealand domestic installations, the only permitted color for Neutral is black.
  6. ^ Australian and NZ cable identification colours and European cable identification colours should not be combined within the same wiring enclosure.
  7. ^ For safety reasons, yellow should not be used when green/yellow striped cables are present.
  8. ^ a b Canadian and American wiring practices are very similar, with ongoing harmonisation efforts.


Wiring methods

[edit]
Installing electrical wiring by "chasing" grooves into the masonry structure of the walls of a building

Materials for wiring interior electrical systems in buildings vary depending on:

  • Intended use and amount of power demand on the circuit
  • Type of occupancy and size of the building
  • National and local regulations
  • Environment in which the wiring must operate.

Wiring systems in a single family home or duplex, for example, are simple, with relatively low power requirements, infrequent changes to the building structure and layout, usually with dry, moderate temperature and non-corrosive environmental conditions. In a light commercial environment, more frequent wiring changes can be expected, large apparatus may be installed and special conditions of heat or moisture may apply. Heavy industries have more demanding wiring requirements, such as very large currents and higher voltages, frequent changes of equipment layout, corrosive, or wet or explosive atmospheres. In facilities that handle flammable gases or liquids, special rules may govern the installation and wiring of electrical equipment in hazardous areas.

Wires and cables are rated by the circuit voltage, temperature rating and environmental conditions (moisture, sunlight, oil, chemicals) in which they can be used. A wire or cable has a voltage (to neutral) rating and a maximum conductor surface temperature rating. The amount of current a cable or wire can safely carry depends on the installation conditions.

The international standard wire sizes are given in the IEC 60228 standard of the International Electrotechnical Commission. In North America, the American Wire Gauge standard for wire sizes is used.

Cables

[edit]

Modern wiring materials

[edit]

Modern non-metallic sheathed cables, such as (US and Canadian) Types NMB and NMC, consist of two to four wires covered with thermoplastic insulation, plus a wire for Protective Earthing/Grounding (bonding), surrounded by a flexible plastic jacket. In North America and the UK this conductor is usually bare wire but in the UK it is required that this bare Protective Earth (PE) conductor be sheathed in Green/Yellow insulating tubing where the Cable Sheathing has been removed. Most other jurisdictions now require the Protective Earth conductor to be insulated to the same standard as the current carrying conductors with Green/Yellow insulation.

With some cables the individual conductors are wrapped in paper before the plastic jacket is applied.

Special versions of non-metallic sheathed cables, such as US Type UF, are designed for direct underground burial (often with separate mechanical protection) or exterior use where exposure to ultraviolet radiation (UV) is a possibility. These cables differ in having a moisture-resistant construction, lacking paper or other absorbent fillers, and being formulated for UV resistance.

Rubber-like synthetic polymer insulation is used in industrial cables and power cables installed underground because of its superior moisture resistance.

Insulated cables are rated by their allowable operating voltage and their maximum operating temperature at the conductor surface. A cable may carry multiple usage ratings for applications, for example, one rating for dry installations and another when exposed to moisture or oil.

Generally, single conductor building wire in small sizes is solid wire, since the wiring is not required to be very flexible. Building wire conductors larger than 10 AWG (or about 5 mm2) are stranded for flexibility during installation, but are not sufficiently pliable to use as appliance cord.

Cables for industrial, commercial and apartment buildings may contain many insulated conductors in an overall jacket, with helical tape steel or aluminium armour, or steel wire armour, and perhaps as well an overall PVC or lead jacket for protection from moisture and physical damage. Cables intended for very flexible service or in marine applications may be protected by woven bronze wires. Power or communications cables (e.g., computer networking) that are routed in or through air-handling spaces (plenums) of office buildings are required under the model building code to be either encased in metal conduit, or rated for low flame and smoke production.

Copper sheathed mineral insulated cables at a panel board

For some industrial uses in steel mills and similar hot environments, no organic material gives satisfactory service. Cables insulated with compressed mica flakes are sometimes used. Another form of high-temperature cable is mineral-insulated cable, with individual conductors placed within a copper tube and the space filled with magnesium oxide powder. The whole assembly is drawn down to smaller sizes, thereby compressing the powder. Such cables have a certified fire resistance rating and are more costly than non–fire-rated cable. They have little flexibility and behave more like rigid conduit rather than flexible cables.

The environment of the installed wires determine how much current a cable is permitted to carry. Because multiple conductors bundled in a cable cannot dissipate heat as easily as single insulated conductors, those circuits are always rated at a lower ampacity. Tables in electrical safety codes give the maximum allowable current based on size of conductor, voltage potential, insulation type and thickness, and the temperature rating of the cable itself. The allowable current will also be different for wet or dry locations, for hot (attic) or cool (underground) locations. In a run of cable through several areas, the part with the lowest rating becomes the rating of the overall run.

Cables usually are secured with special fittings where they enter electrical apparatus; this may be a simple screw clamp for jacketed cables in a dry location, or a polymer-gasketed cable connector that mechanically engages the armour of an armoured cable and provides a water-resistant connection. Special cable fittings may be applied to prevent explosive gases from flowing in the interior of jacketed cables, where the cable passes through areas where flammable gases are present. To prevent loosening of the connections of individual conductors of a cable, cables must be supported near their entrance to devices and at regular intervals along their runs. In tall buildings, special designs are required to support the conductors of vertical runs of cable. Generally, only one cable per fitting is permitted, unless the fitting is rated or listed for multiple cables.

Special cable constructions and termination techniques are required for cables installed in ships. Such assemblies are subjected to environmental and mechanical extremes. Therefore, in addition to electrical and fire safety concerns, such cables may also be required to be pressure-resistant where they penetrate a vessel's bulkheads. They must also resist corrosion caused by salt water or salt spray, which is accomplished through the use of thicker, specially constructed jackets, and by tinning the individual wire stands.

US single-phase residential power distribution transformer, showing the two insulated line conductors and the bare neutral conductor (derived from the earthed center-tap of the transformer). The distribution supporting cantenaries are also shown.

In North American practice, for residential and light commercial buildings fed with a single-phase split 120/240 service, an overhead cable from a transformer on a power pole is run to the service entrance point. The cable is a three conductor twisted "triplex" cable with a bare neutral and two insulated conductors, with no overall cable jacket.[23] The neutral conductor is often a supporting "messenger" steel wire, which is used to support the insulated line conductors.

Copper conductors

[edit]

Electrical devices often use copper conductors because of their properties, including their high electrical conductivity, tensile strength, ductility, creep resistance, corrosion resistance, thermal conductivity, coefficient of thermal expansion, solderability, resistance to electrical overloads, compatibility with electrical insulators, and ease of installation. Copper is used in many types of electrical wiring.[24][25]

Aluminium conductors

[edit]
Terminal blocks for joining aluminium and copper conductors. The terminal blocks may be mounted on a DIN rail.

Aluminium wire was common in North American residential wiring from the late 1960s to mid-1970s due to the rising cost of copper. Because of its greater resistivity, aluminium wiring requires larger conductors than copper. For instance, instead of 14 AWG (American wire gauge) copper wire, aluminium wiring would need to be 12 AWG on a typical 15 ampere lighting circuit, though local building codes vary.

Solid aluminium conductors were originally made in the 1960s from a utility-grade aluminium alloy that had undesirable properties for a building wire, and were used with wiring devices intended for copper conductors.[26][27] These practices were found to cause defective connections and fire hazards. In the early 1970s new aluminium wire made from one of several special alloys was introduced, and all devices – breakers, switches, receptacles, splice connectors, wire nuts, etc. — were specially designed for the purpose. These newer aluminium wires and special designs address problems with junctions between dissimilar metals, oxidation on metal surfaces, and mechanical effects that occur as different metals expand at different rates with increases in temperature.[citation needed]

Unlike copper, aluminium has a tendency to creep or cold-flow under pressure, so older plain steel screw clamped connections could become loose over time. Newer electrical devices designed for aluminium conductors have features intended to compensate for this effect. Unlike copper, aluminium forms an insulating oxide layer on the surface. This is sometimes addressed by coating aluminium conductors with an antioxidant paste (containing zinc dust in a low-residue polybutene base[28]) at joints, or by applying a mechanical termination designed to break through the oxide layer during installation.

Some terminations on wiring devices designed only for copper wire would overheat under heavy current load and cause fires when used with aluminium conductors. Revised standards for wire materials and wiring devices (such as the CO/ALR "copper-aluminium-revised" designation) were developed to reduce these problems. While larger sizes are still used to feed power to electrical panels and large devices, aluminium wiring for residential use has acquired a poor reputation and has fallen out of favour.

Aluminium conductors are still heavily used for bulk power transmission, power distribution, and large feeder circuits with heavy current loads, due to the various advantages they offer over copper wiring. Aluminium conductors both cost and weigh less than copper conductors, so a much larger cross sectional area can be used for the same weight and price. This can compensate for the higher resistance and lower mechanical strength of aluminium, meaning the larger cross sectional area is needed to achieve comparable current capacity and other features. Aluminium conductors must be installed with compatible connectors and special care must be taken to ensure the contact surface does not oxidise.

Raceways and cable runs

[edit]
Electrical conduit risers, seen inside fire-resistance–rated shaft, as seen entering bottom of a firestop. The firestop is made of firestop mortar on top, rockwool on the bottom. Raceways are used to protect cables from damage.

Insulated wires may be run in one of several forms between electrical devices. This may be a specialised bendable pipe, called a conduit, or one of several varieties of metal (rigid steel or aluminium) or non-metallic (PVC or HDPE) tubing. Rectangular cross-section metal or PVC wire troughs (North America) or trunking (UK) may be used if many circuits are required. Wires run underground may be run in plastic tubing encased in concrete, but metal elbows may be used in severe pulls. Wiring in exposed areas, for example factory floors, may be run in cable trays or rectangular raceways having lids.

Where wiring, or raceways that hold the wiring, must traverse fire-resistance rated walls and floors, the openings are required by local building codes to be firestopped. In cases where safety-critical wiring must be kept operational during an accidental fire, fireproofing must be applied to maintain circuit integrity in a manner to comply with a product's certification listing. The nature and thickness of any passive fire protection materials used in conjunction with wiring and raceways has a quantifiable impact upon the ampacity derating, because the thermal insulation properties needed for fire resistance also inhibit air cooling of power conductors.

A cable tray can be used in stores and dwellings.

Cable trays are used in industrial areas where many insulated cables are run together. Individual cables can exit the tray at any point, simplifying the wiring installation and reducing the labour cost for installing new cables. Power cables may have fittings in the tray to maintain clearance between the conductors, but small control wiring is often installed without any intentional spacing between cables.

Local electrical regulations may restrict or place special requirements on mixing of voltage levels within one cable tray. Good design practices may segregate, for example, low level measurement or signal cables from trays carrying high power branch circuits, to prevent induction of noise into sensitive circuits.

Since wires run in conduits or underground cannot dissipate heat as easily as in open air, and since adjacent circuits contribute induced currents, wiring regulations give rules to establish the current capacity (ampacity).

Special sealed fittings are used for wiring routed through potentially explosive atmospheres.

Bus bars, bus duct, cable bus

[edit]
Topside of firestop with penetrants consisting of electrical conduit on the left and a bus duct on the right. The firestop consists of firestop mortar on top and rockwool on the bottom, for a two-hour fire-resistance rating.

For very high currents in electrical apparatus, and for high currents distributed through a building, bus bars can be used. (The term "bus" is a contraction of the Latin omnibus – meaning "for all".) Each live ("hot") conductor of such a system is a rigid piece of copper or aluminium, usually in flat bars (but sometimes as tubing or other shapes). Open bus bars are never used in publicly accessible areas, although they are used in manufacturing plants and power company switch yards to gain the benefit of air cooling. A variation is to use heavy cables, especially where it is desirable to transpose or "roll" phases.

In industrial applications, conductor bars are often pre-assembled with insulators in grounded enclosures. This assembly, known as bus duct or busway, can be used for connections to large switchgear or for bringing the main power feed into a building. A form of bus duct known as "plug-in bus" is used to distribute power down the length of a building; it is constructed to allow tap-off switches or motor controllers to be installed at designated places along the bus. The big advantage of this scheme is the ability to remove or add a branch circuit without removing voltage from the whole duct.

Busbars for distributing protective earth (ground)

Bus ducts may have all phase conductors in the same enclosure (non-isolated bus), or may have each conductor separated by a grounded barrier from the adjacent phases (segregated bus). For conducting large currents between devices, a cable bus is used.[further explanation needed]

For very large currents in generating stations or substations, where it is difficult to provide circuit protection, an isolated-phase bus is used. Each phase of the circuit is run in a separate grounded metal enclosure. The only fault possible is a phase-to-ground fault, since the enclosures are separated. This type of bus can be rated up to 50,000 amperes and up to hundreds of kilovolts (during normal service, not just for faults), but is not used for building wiring in the conventional sense.

Electrical panels

[edit]
Electrical panels, cables and firestops in an electrical service room at a paper mill in Ontario, Canada

Electrical panels are easily accessible junction boxes used to reroute and switch electrical services. The term is often used to refer to circuit breaker panels or fuseboxes. Local codes can specify physical clearance around the panels.[citation needed]

Degradation by pests

[edit]

Squirrels, rats, and other rodents may gnaw on unprotected wiring, causing fire and shock hazards.[29][30] This is especially true of PVC-insulated telephone and computer network cables. Several techniques have been developed to deter these pests, including insulation loaded with pepper dust.[citation needed]

Early wiring methods

[edit]

The first interior power wiring systems used conductors that were bare or covered with cloth, which were secured by staples to the framing of the building or on running boards. Where conductors went through walls, they were protected with cloth tape. Splices were done similarly to telegraph connections, and soldered for security. Underground conductors were insulated with wrappings of cloth tape soaked in pitch, and laid in wooden troughs which were then buried. Such wiring systems were unsatisfactory because of the danger of electrocution and fire, plus the high labour cost for such installations. The first electrical codes arose in the 1880s with the commercial introduction of electrical power; however, many conflicting standards existed for the selection of wire sizes and other design rules for electrical installations, and a need was seen to introduce uniformity on the grounds of safety.

Knob and tube (US)

[edit]
Knob-and-tube wiring (The orange cable is an unrelated extension cord.)

The earliest standardized method of wiring in buildings, in common use in North America from about 1880 to the 1930s, was knob and tube (K&T) wiring: single conductors were run through cavities between the structural members in walls and ceilings, with ceramic tubes forming protective channels through joists and ceramic knobs attached to the structural members to provide air between the wire and the lumber and to support the wires. Since air was free to circulate over the wires, smaller conductors could be used than required in cables. By arranging wires on opposite sides of building structural members, some protection was afforded against short-circuits that can be caused by driving a nail into both conductors simultaneously.

By the 1940s, the labor cost of installing two conductors rather than one cable resulted in a decline in new knob-and-tube installations. However, the US code still allows new K&T wiring installations in special situations (some rural and industrial applications).

Metal-sheathed wires

[edit]
Lead-cased electrical cable from a circa 1912 house in southern England. Two conductors are sheathed in red and black rubber, and the central earth wire is bare. These cables are dangerous because the sheath is prone to split if repeatedly flexed.

In the United Kingdom, an early form of insulated cable,[31] introduced in 1896, consisted of two impregnated-paper-insulated conductors in an overall lead sheath. Joints were soldered, and special fittings were used for lamp holders and switches. These cables were similar to underground telegraph and telephone cables of the time. Paper-insulated cables proved unsuitable for interior wiring installations because very careful workmanship was required on the lead sheaths to ensure moisture did not affect the insulation.

A system later invented in the UK in 1908 employed vulcanised-rubber insulated wire enclosed in a strip metal sheath. The metal sheath was bonded to each metal wiring device to ensure earthing continuity.

A system developed in Germany called "Kuhlo wire" used one, two, or three rubber-insulated wires in a brass or lead-coated iron sheet tube, with a crimped seam. The enclosure could also be used as a return conductor. Kuhlo wire could be run exposed on surfaces and painted, or embedded in plaster. Special outlet and junction boxes were made for lamps and switches, made either of porcelain or sheet steel. The crimped seam was not considered as watertight as the Stannos wire used in England, which had a soldered sheath.[32]

A somewhat similar system called "concentric wiring" was introduced in the United States around 1905. In this system, an insulated electrical wire was wrapped with copper tape which was then soldered, forming the grounded (return) conductor of the wiring system. The bare metal sheath, at earth potential, was considered safe to touch. While companies such as General Electric manufactured fittings for the system and a few buildings were wired with it, it was never adopted into the US National Electrical Code. Drawbacks of the system were that special fittings were required, and that any defect in the connection of the sheath would result in the sheath becoming energised.[33]

Other historical wiring methods

[edit]

Armored cables with two rubber-insulated conductors in a flexible metal sheath were used as early as 1906, and were considered at the time a better method than open knob-and-tube wiring, although much more expensive.

The first rubber-insulated cables for US building wiring were introduced in 1922 with US patent 1458803, Burley, Harry & Rooney, Henry, "Insulated electric wire", issued 1923-06-12, assigned to Boston Insulated Wire and Cable . These were two or more solid copper electrical wires with rubber insulation, plus woven cotton cloth over each conductor for protection of the insulation, with an overall woven jacket, usually impregnated with tar as a protection from moisture. Waxed paper was used as a filler and separator.

Over time, rubber-insulated cables become brittle because of exposure to atmospheric oxygen, so they must be handled with care and are usually replaced during renovations. When switches, socket outlets or light fixtures are replaced, the mere act of tightening connections may cause hardened insulation to flake off the conductors. Rubber insulation further inside the cable often is in better condition than the insulation exposed at connections, due to reduced exposure to oxygen.

The sulfur in vulcanized rubber insulation attacked bare copper wire so the conductors were tinned to prevent this. The conductors reverted to being bare when rubber ceased to be used.

Diagram of a simple electrical cable with three insulated conductors, with IEC colour scheme

About 1950, PVC insulation and jackets were introduced, especially for residential wiring. About the same time, single conductors with a thinner PVC insulation and a thin nylon jacket (e.g. US Type THN, THHN, etc.) became common.[citation needed]

The simplest form of cable has two insulated conductors twisted together to form a unit. Such non-jacketed cables with two (or more) conductors are used only for extra-low voltage signal and control applications such as doorbell wiring.

Other methods of securing wiring that are now obsolete include:

  • Re-use of existing gas pipes when converting gas lighting installations to electric lighting. Insulated conductors were pulled through the pipes that had formerly supplied the gas lamps. Although used occasionally, this method risked insulation damage from sharp edges inside the pipe at each joint.
  • Wood mouldings with grooves cut for single conductor wires, covered by a wooden cap strip. These were prohibited in North American electrical codes by 1928. Wooden moulding was also used to some degree in the UK, but was never permitted by German and Austrian rules.[34]
  • A system of flexible twin cords supported by glass or porcelain buttons was used near the turn of the 20th century in Europe, but was soon replaced by other methods.[35]
  • During the first years of the 20th century, various patented forms of wiring system such as Bergman and Peschel tubing were used to protect wiring; these used very thin fibre tubes, or metal tubes which were also used as return conductors.[36]
  • In Austria, wires were concealed by embedding a rubber tube in a groove in the wall, plastering over it, then removing the tube and pulling wires through the cavity.[37]

Metal moulding systems, with a flattened oval section consisting of a base strip and a snap-on cap channel, were more costly than open wiring or wooden moulding, but could be easily run on wall surfaces. Similar surface mounted raceway wiring systems are still available today.

See also

[edit]

References

[edit]
  1. ^ "National Electrical Code". National Electrical Manufacturers Association. Retrieved 4 January 2016.
  2. ^ a b c d e "The history of colour identification of conductors". Retrieved 10 July 2024.
  3. ^ a b c d "Wire colour coding abroad".
  4. ^ DS/EN 60364 afsnit 514.3.1.Z1
  5. ^ Håkansson, Paul författarlänk=https://peallkonsult.se/ (2021). Elektromekanik. p. 109. ISBN 978-91-89259-14-0.
  6. ^ DIN VDE 0293-308 (Kennzeichnung der Adern von Kabeln/Leitungen und flexiblen Leitungen durch Farben)
  7. ^ Informationen zur Harmonisierung der Aderfarben at the Wayback Machine (archived 2016-03-04)
  8. ^ "Dawne oraz pozaunijne oznaczenia przewodów, systemy sieci". Retrieved 17 July 2024.
  9. ^ "Правила Устройства электроустановок". Retrieved 17 July 2024.
  10. ^ "New Cable Colour Code for Electrical Installations". Energy Market Authority. Retrieved 4 January 2016.
  11. ^ SS-436 40 000 section 514.3. (Swedish)
  12. ^ Cecilia Axelsson (Swedish
  13. ^ Noel Williams, Jeffrey S. Sargen (2007). NEC Q and A: Questions and Answers on the National Electrical Code. Jones & Bartlett Learning. p. 117. ISBN 9780763744731. Retrieved 4 January 2016.
  14. ^ Bill Atkinson, Roger Lovegrove, Gary Gundry, Electrical Installation Designs, pp. 111–112, John Wiley & Sons, 2013 ISBN 1119992842.
  15. ^ National Fire Protection Association (1 January 1968). National Electrical Code 1968 a USA Standard (1968 ed.). National Fire Protection Association; NFPA No. 70-1968 USAS C1-1968 edition. p. 34.
  16. ^ "Color Coding Chart". Conwire. Retrieved 4 January 2016.
  17. ^ "Korea Electro-technical Code". Ministry of Trade, Industry and Energy. Retrieved 17 September 2021.
  18. ^ Switzerland before 2005 also red and white for phases.
  19. ^ Switzerland blue or light blue for neutral conductors
  20. ^ AS/NZS 3000 "Wiring Rules", Table 3.4, CONDUCTOR COLOURS FOR INSTALLATION WIRING, "Function: Active: Any colour other than green, yellow, green/yellow, black or light blue.". 2007.
  21. ^ "NEC adoption and use in Latin America".
  22. ^ C22.1-15—Canadian Electrical Code, Part I: Safety Standard for Electrical Installations (23rd ed.). Canadian Standards Association. 2015. Rules 4-038, 24-208(c). ISBN 978-1-77139-718-6.
  23. ^ "Generating Power to Your House - How Power Grids Work - HowStuffWorks". HowStuffWorks. April 2000. Retrieved 21 February 2016.
  24. ^ Pops, Horace (June 2008). "Processing of wire from antiquity to the future". Wire Journal International: 58–66.
  25. ^ The Metallurgy of Copper Wire Archived 1 September 2013 at the Wayback Machine. litz-wire.com
  26. ^ "The Evolution of Aluminum Conductors Used for Building Wire and Cable" (PDF). NEMA. 2012. Archived from the original (PDF) on 10 October 2016. Retrieved 12 October 2016.
  27. ^ "Aluminum Building Wire Installation & Terminations" (PDF). IAEI News (January/February 2006). Archived from the original (PDF) on 27 January 2021. Retrieved 12 October 2016.
  28. ^ "Ideal Noalox Antioxidant Material Safety Data Sheet" (PDF).
  29. ^ "Guide to Safe Removal". Squirrels in the Attic. Retrieved 19 April 2012.
  30. ^ University of Illinois Extension. "Tree Squirrels > Damage Prevention and Control Measures". Living with Wildlife in Illinois. University of Illinois Board of Trustees. Retrieved 12 March 2013.
  31. ^ Robert M. Black, The History of Electric Wires and Cable, Peter Pergrinus Ltd. London, 1983 ISBN 0-86341-001-4, pp. 155–158
  32. ^ Croft
  33. ^ Schneider, Norman H., Wiring houses for the electric light; together with special references to low voltage battery systems, Spon and Chamberlain, New York 1916, pp. 93–98
  34. ^ Croft, p. 142
  35. ^ Croft, p. 143
  36. ^ Croft, p. 136
  37. ^ Croft, p. 137

Bibliography

[edit]

Further reading

[edit]
[edit]