Jump to content

Cross-linked polyethylene

From Wikipedia, the free encyclopedia
(Redirected from PEX)
A cross-linked polyethylene (PEX) pipe

Cross-linked polyethylene, commonly abbreviated PEX, XPE or XLPE, is a form of polyethylene with cross-links. It is used predominantly in building services pipework systems, hydronic radiant heating and cooling systems, domestic water piping, insulation for high tension (high voltage) electrical cables, and baby play mats. It is also used for natural gas and offshore oil applications, chemical transportation, and transportation of sewage and slurries. PEX is an alternative to polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC) or copper tubing for use as residential water pipes.

Properties

[edit]

Low-temperature impact strength, abrasion resistance and environmental stress cracking resistance can be increased significantly by crosslinking, whereas hardness and rigidity are somewhat reduced. Compared to thermoplastic polyethylene, PEX does not melt (analogous to elastomers) and is thermally resistant (over longer periods of up to 120 °C, for short periods without electrical or mechanical load up to 250 °C). With increasing crosslinking density also the maximum shear modulus increases (even at higher temperatures).[1][2] PEX has significantly enhanced properties compared with ordinary PE.

Almost all PEX used for pipe and tubing is made from high-density polyethylene (HDPE). PEX contains cross-linked bonds in the polymer structure, changing the thermoplastic to a thermoset. Cross-linking is accomplished during or after the extrusion of the tubing. The required degree of cross-linking, according to ASTM Standard F876, is between 65% and 89%. A higher degree of cross-linking could result in brittleness and stress cracking of the material, while a lower degree of cross-linking could result in product with poorer physical properties.

PEX has significantly enhanced properties compared to ordinary PE.[3] This is due to the introduction of crosslinks in the system, which can significantly improve the chemical, thermal, and mechanical properties of the polymer.[4] While HDPE and PEX both display increases in the initial tangent modulus and yield stress under temperature or strain-rate increases when undergoing compression, HDPE tends to exhibit flow behavior after reaching a higher yield stress and PEX tends to exhibit strain-hardening after reaching its slightly lower yield stress.[5] The latter exhibits some flow behavior but only after reaching higher true strains. The behavior observed in PEX is also mimicked by the thermoplastic ultra-high molecular weight polyethylene (UHMWPE). However, PEX displays a stronger temperature and strain-rate dependence than UHMWPE. Additionally, PEX is notable for its high thermal stability. It displays improved creep behavior (i.e. resists creep deformation) and maintains high strength and hardness at very high temperatures compared to thermoplastic polyethylene.[6]

The type of initial polymer structure and amount of crosslinking can have a large impact on the resulting mechanical properties of PEX.[7] One study looked at the effect of crosslinking low-density polyethylene (LDPE) with different amounts of dicumyl peroxide (DCP).[8] It was found that increasing the weight percent of the peroxide crosslinker resulted in a lower degree of crystallinity, as observed via differential scanning calorimetry (DSC). The degree to which a polymer crystallizes and crosslinks can have a significant impact on its properties, and it was indeed found that the increase in crosslinking degree and corresponding decrease in crystallinity correlated to a lower elongation at break. It was suggested that this was due to the higher presence of chemical crosslinks (the peroxides) compared to the physical crosslinks (formed by the crystallites), as chemical crosslinks tend to inhibit the elongation behavior of polymers. Additionally, it was found that the maximum tensile strength tended to increase since the intermolecular forces between chains increases with additional crosslinks. Similar results have been found with the addition of silane crosslinkers. In another study, the amount of silane crosslinker added to linear low-density polyethylene (LLDPE) was varied.[9] The resulting Young’s modulus and maximum tensile strength increased with crosslinker concentration but the elongation at break decreased due to decreases in crystallinity. The presence of fillers can further strengthen PEX’s mechanical properties. In the same study, the researchers looked at the effect of adding a filler known as montmorillonite (MMT) nanoclay and observed even higher Young’s moduli and tensile strengths, indicating a strong interfacial interaction between the silane crosslinked LLDPE and the MMT.


Almost all cross-linkable polyethylene compounds (XLPE) for wire and cable applications are based on LDPE. XLPE-insulated cables have a rated maximum conductor temperature of 90 °C and an emergency rating up to 140 °C, depending on the standard used. They have a conductor short-circuit rating of 250 °C. XLPE has excellent dielectric properties, making it useful for medium voltage—1 to 69 kV AC, and high-voltage cables—up to 380 kV AC-voltage, and several hundred kV DC.

Numerous modifications in the basic polymer structure can be made to maximize productivity during the manufacturing process. For medium voltage applications, reactivity can be boosted significantly. This results in higher line speeds in cases where limitations in either the curing or cooling processes within the continuous vulcanization (CV) tubes used to cross-link the insulation.[citation needed] This is particularly useful for high-voltage cable and extra-high voltage cable applications, where degassing requirements can significantly lengthen cable manufacturing time.

Preparation methods

[edit]

Various methods can be used to prepare PEX from thermoplastic polyethylene (PE-LD, PE-LLD or PE-HD). The first PEX material was prepared in the 1930s, by irradiating the extruded tube with an electron beam. The electron beam processing method was made feasible in the 1970s, but was still expensive. In the 1960s, Engel cross-linking was developed. In this method, a peroxide is mixed with the HDPE before extruding.[10] In 1968, the Sioplas process using silicon hydride (silane) was patented, followed by another silane-based process, Monosil, in 1974. A process using vinylsilane followed in 1986.[citation needed]

Raw material: XLPE powder used in rotational molding in a factory

Types of crosslinking

[edit]

A basic distinction is made between peroxide crosslinking (PE-Xa), silane crosslinking (PE-Xb), electron beam crosslinking (PE-Xc) and azo crosslinking (PE-Xd).[2]

Shown are the peroxide, the silane and irradiation crosslinking

Shown are the peroxide, the silane and irradiation crosslinking. In each method, a hydrogen atom is removed from the polyethylene chain (top center), either by radiation () or by peroxides (R-O-O-R), forming a radical. Then, two radical chains can crosslink, either directly (bottom left) or indirectly via silane compounds (bottom right).

  • Peroxide crosslinking (PE-Xa): The crosslinking of polyethylene using peroxides (e.g. dicumyl peroxide or di-tert-butyl peroxide) is still of major importance. In the so-called Engel process, a mixture of HDPE and 2%[11] peroxide is at first mixed at low temperatures in an extruder and then crosslinked at high temperatures (between 200 °C and 250 °C).[2] The peroxide decomposes to peroxide radicals (RO•), which abstract (remove) hydrogen atoms from the polymer chain, leading to radicals. When these combine, a crosslinked network is formed.[3] The resulting polymer network is uniform, of low tension and high flexibility, whereby it is softer and tougher than (the irradiated) PE-Xc.[2] The same process is used for LDPE as well, though the temperature may vary from 160 °C to 220 °C.
  • Silane crosslinking (PE-Xb): In the presence of silanes (e.g. trimethoxyvinylsilane) polyethylene can initially be Si-functionalized by irradiation or by a small amount of a peroxide. Later Si-OH groups can be formed in a water bath by hydrolysis, which condense then and crosslink the PE by the formation of Si-O-Si bridges. [16] Catalysts such as dibutyltin dilaurate may accelerate the reaction.[11]
  • Irradiation crosslinking (PE-Xc): The crosslinking of polyethylene is also possible by a downstream radiation source (usually an electron accelerator, occasionally an isotopic radiator). PE products are crosslinked below the crystalline melting point by splitting off hydrogen atoms. β-radiation possesses a penetration depth of 10 mm, ɣ-radiation 100 mm. Thereby the interior or specific areas can be excluded from the crosslinking.[2] However, due to high capital and operating costs radiation crosslinking plays only a minor role compared with the peroxide crosslinking.[1] In contrast to peroxide crosslinking, the process is carried out in the solid state. Thereby, the cross-linking takes place primarily in the amorphous regions, while the crystallinity remains largely intact.[11]
  • Azo crosslinking (PE-Xd): In the so-called Lubonyl process polyethylene is crosslinked preadded azo compounds after extrusion in a hot salt bath.[1][2]

Degree of crosslinking

[edit]

A low degree of crosslinking leads initially only to a multiplication of the molecular weight. The individual macromolecules are not linked and no covalent network is formed yet. Polyethylene that consists of those large molecules behaves similar to polyethylene of ultra high molecular weight (PE-UHMW), i.e. like a thermoplastic elastomer.[12]

Upon further crosslinking (crosslinking degree about 80%),[13] the individual macromolecules are eventually connected to a network. This crosslinked polyethylene (PE-X) is chemically seen a thermoset, it shows above the melting point rubber-elastic behavior and cannot be processed in the melt anymore.[12]

The degree of crosslinking (and hence the extent of the change) is different in intensity depending on the process. According to DIN 16892 (a quality requirement for pipes made of PE-X) at least the following degree of crosslinking must be achieved:[13]

  • in peroxide crosslinking (PE-Xa): 75%
  • with silane crosslinking (PE-Xb): 65%
  • with electron beam crosslinking (PE-Xc): 60%
  • in azo crosslinking (PE-Xd): 60%

Classification

[edit]

North America

[edit]

All PEX pipe is manufactured with its design specifications listed directly on the pipe. These specifications are listed to explain the pipe's many standards as well as giving specific detailing about the manufacturer. The reason that all these specifications are given, are so that the installer is aware if the product is meeting standards for the necessary local codes. The labeling ensures the user that the tubing is up to all the standards listed.[14]

Materials used in PEX pipes in North America are defined by cell classifications that are described in ASTM standards, the most common being ASTM F876. Cell classifications for PEX include 0006, 0008, 1006, 1008, 3006, 3008, 5006 and 5008, the most common being 5006. Classifications 0306, 3306, 5206 and 5306 are also common, these materials containing ultraviolet blockers and/or inhibitors for limited UV resistance. In North America all PEX tubing products are manufactured to ASTM, NSF and CSA product standards, among them the aforementioned ASTM standard F876 as well as F877, NSF International standards NSF 14 and NSF 61 ("NSF-pw"), and Canadian Standards Association standard B137.5, to which the pipes are tested, certified and listed. The listings and certifications met by each product appear on the printline of the pipe or tubing to ensure the product is used in the proper applications for which it was designed.

Europe

[edit]

In European standards. there are three classifications referred to as PEX-A, -B, and -C. The classes are not related to any type of rating system.

PEX-A (PE-Xa, PEXa)

[edit]

PEX-A is produced by the peroxide (Engel) method. This method performs "hot" cross-linking, above the crystal melting point. However, the process takes slightly longer than the other two methods as the polymer has to be kept at high temperature and pressure for long periods during the extrusion process. The cross-linked bonds are between carbon atoms.

PEX-B (PE-Xb, PEXb)

[edit]

The silane method, also called the "moisture cure" method, results in PEX-B. In this method, cross-linking is performed in a secondary post-extrusion process, producing cross-links between a cross-linking agent. The process is accelerated with heat and moisture. The cross-linked bonds are formed through silanol condensation between two grafted vinyltrimethoxysilane (VTMS) units, connecting the polyethylene chains with C-C-Si-O-Si-C-C bridges.

PEX-C (PE-Xc, PEXc)

[edit]

PEX-C is produced through electron beam processing, in a "cold" cross-linking process (below the crystal melting point). It provides less uniform, lower-degree cross-linking than the Engel method, especially at tube diameters over one inch (2.5 cm). When the process is not controlled properly, the outer layer of the tube may become brittle. However, it is the cleanest, most environmentally friendly method of the three, since it does not involve other chemicals and uses only high-energy electrons to split the carbon-hydrogen bonds and facilitate cross-linking.

Plumbing

[edit]
Radiant heating system manifold using PEX tubing
This copper exterior valve has burst from freezing; several reports suggest that PEX takes longer to burst under freezing conditions.
PEX's flexibility allows for fewer connections, better water flow, and faster, simpler, and less expensive installation than comparable materials.
A PEX push fitting allows an installer to join copper and PEX pipes by simply pushing them together for a watertight fit.
Brass crimp fittings, another popular type of fittings primarily used for connection PEX to PEX, PEX to Threaded pipes. 1.Drop Ear Elbows connect PEX and threaded pipe at a 90-degree 2.PEX to Copper Solder Adapter 3.PEX to Copper Threaded Adapter 4.PEX to Female Threaded Adapter 5.PEX Plug - terminate end of pipe 6.PEX to PEX Coupling 7.PEX to PEX 90-degree Elbow 8.PEX to Copper Adapter 9.PEX to Copper 90-degree Elbow 10. PEX x PEX x PEX 3-way PEX Tee.
Tools and fittings used in a plumbing installation with PEX piping. (1) crimping tool to squeeze a metal band to join a pipe and a fitting (2) compression coupling joining two 1/2 inch pipes (copper or PEX) (3) "T-joint" to connect 3/4", 3/4", and 1/2" pipes (4) Copper-to-PEX 1/2" connection (requires soldering) (5 and 6) tools to undo PEX connections (7) crimp rings to squeeze metal band to connect PEX to a fixture (8) PEX tube cutter.

PEX tubing is widely used to replace copper in plumbing applications. One estimate from 2006 was that residential use of PEX for delivering drinking water to home faucets was increasing by 40% annually.[15] In 2006, The Philadelphia Inquirer recommended that plumbing installers switch from copper pipes to PEX.[16]

In the early to mid 20th century, mass-produced plumbing pipes were made from galvanized steel. As users experienced problems with the internal build-up of rust, which reduced water volume, these were replaced by copper pipes in the late 1960s.[17] Plastic pipes with fittings using glue were used as well in later decades. Initially PEX tubing was the most popular way to transport water in hydronic radiant heating systems, and it was used first in hydronic systems from the 1960s onwards.[15] Hydronic systems circulate water from a boiler or heater to places in the house needing heat, such as baseboard heaters or radiators.[18] PEX is suitable for recirculating hot water.[19]

Gradually, PEX became more accepted for more indoor plumbing uses, such as carrying pressurized water to fixtures throughout the house. Increasingly, since the 2000s, copper pipes as well as plastic PVC pipes are being replaced with PEX.[17] PEX can be used for underground purposes, although one report suggested that appropriate "sleeves" be used for such applications.[19]

Benefits

[edit]

Benefits of using PEX in plumbing include:

  • Flexibility. PEX is a popular solution for residential water plumbing in new construction due to its flexibility.[20] PEX tubing can easily bend without buckling or cracking, so pipe runs do not need to be straight. PEX is often sold in long rolls, which eliminates the need to couple individual lengths of straight pipe together for long runs. For shallow bends, PEX tubing can be bent and supported with a metal or hard plastic brace, so elbow fittings are only required for sharp corners. By contrast, other common indoor plumbing materials—namely PVC, CPVC and copper—are rigid and require angled fittings to accommodate any significant bend in a pipe run.
  • Direct routing of pipes. Since PEX tubing does not require elbow joints in most cases, it is often possible to run a supply line directly from a distribution point to an outlet fixture without any splices or connections in the line. This eliminates the potential structural weakness or cost associated with joints.[15]
  • Less pressure drop due to turbulence. Since PEX pipe lines typically have fewer sharp turns and splices than lines constructed from rigid tube materials, less pressure loss can be expected between the distribution point and outlet fixtures. Less pressure drop translates to extra water pressure at sinks, showers, and toilets for a given supply pressure. Conversely, PEX may allow for a weaker (and less expensive) pump than alternative piping to achieve the equivalent pressure at the outlet fixtures.
  • Lower materials cost. Cost of materials for PEX tubing is approximately 25% of alternatives.[21][22] By contrast, the inflation-adjusted price of copper more than quadrupled in the two decades between 2002 and 2022.[23]
  • Easier installation. Installing PEX is much less labor-intensive than copper or PVC pipes, since there is no need to solder or glue pipes together.[21] One home inspector wrote that "Once you've worked with PEX, you'll never go back to that other stinky glue stuff."[24] Builders installing radiant heating systems found that PEX pipes "made installation easy and operation problem-free".[20] PEX connections can be made by pushing two matching parts together using a compression fitting, or by using an adjustable wrench or a special crimping tool.[15] Generally, fewer connections and fittings are needed in a PEX installation.[14]
  • Non-corrosive. Unlike copper, PEX is not subject to corrosion when exposed to minerals or moisture.[14]
  • No fire risk during installation. The oldest and most common method for joining copper piping is to solder pieces together using a torch. PEX eliminates the risk associated with this open flame.[25]
  • Ability to merge new PEX with existing copper and PVC systems. Fittings that allow installers to join a copper pipe on one end with a PEX line at the other are widely available.[15] These couplings allow the installer to reduce or expand the diameter of the pipes at the transition to PEX if desired.
  • Suitable for hot and cold pipes. A convenient arrangement is to use color-coding to lessen the possibility of confusion.[24] Typically, red PEX tubing is used for hot water and blue PEX tubing is used for cold water.[14]
  • Less likely to burst from freezing. PEX, due to its flexibility, is typically understood to be more burst-resistant in freezing conditions than copper or PVC pipe.[26] One account suggested that PEX water-filled pipes, frozen over time, will swell and tear; in contrast, copper pipe "rips" and PVC "shatters".[27] Home expert Steve Maxwell suggested in 2007 that PEX water-filled pipes could endure "five or six freeze-thaw cycles without splitting" while copper would split apart promptly on the first freeze.[28] In new unheated seasonal homes, it is still recommended to drain pipes during an unheated cold season or take other measures to prevent pipes from bursting because of the cold. In new construction, it is recommended that all water pipes be sloped slightly to permit drainage, if necessary.[28]
  • Pipe insulation possible. Conventional foam wrap insulation materials can easily be added to PEX piping to reduce heat loss from hot water water lines, reduce heat transfer into cold water lines, and mitigate the risk of freezing in outdoor environments.[29]

Drawbacks

[edit]
  • Degradation from sunlight. PEX tubing cannot be used in applications exposed to sunlight, as it degrades fairly rapidly.[30] Prior to installation it must be stored away from sunlight, and needs to be shielded from daylight after installation. Leaving it exposed to direct sunlight for as little as 30 days may result in premature failure of the tubing due to embrittlement.[30]
  • Perforation by insects. PEX tubing is vulnerable to being perforated by the mouthparts of plant-feeding insects; in particular, the Western conifer seed bug (Leptoglossus occidentalis) is known to sometimes pierce through PEX tubing, resulting in leakage.[31]
  • Problems with yellow brass fittings. There have been some claimed PEX systems failures in the U.S., Canada and Europe resulting in several pending class action lawsuits. The failures are claimed to be a result of the brass fittings used in the PEX system. Generally, builders and manufacturers have learned from these experiences and have found the best materials for use in fittings used to connect pipe with connectors, valves and other fittings. But there were problems reported with a specific type of brass fitting used in connection with installations in Nevada that caused a negative interaction between its mineral-rich hard water[32] and so-called "yellow brass" fittings.[19] Zinc in the fittings leached into the pipe material in a chemical reaction known as dezincification, causing some leaks or blockages.[32] A solution was to replace the yellow brass fittings, which had 30% zinc, with red brass fittings, which had 5% to 10% zinc.[33] It led California building authorities to insist on fittings made from "red brass" which typically has a lower zinc content, and is unlikely to cause problems in the future since problems with these specific fittings have become known.[19]
  • Initial adjustment to a new plumbing system. There were a few reported problems in the early stages as plumbers and homeowners learned to adjust to the new fittings, and when connections were poorly or improperly made, but home inspectors have generally not noticed any problems with PEX since 2000.[34]
  • Limited adhesives for pipe insulation. Some pipe insulation applied to PEX using certain adhesives could have a detrimental effect causing the pipe to age prematurely; however, other insulating materials can be used, such as conventional foam wrap insulation, without negative effects.[29]
  • Fitting expenses. Generally, PEX fittings, particularly the do-it-yourself push-fit ones, are more expensive than copper ones, although there is no soldering required.[15] Due to the flexibility of PEX, it generally requires fewer fittings, which tends to offset the higher cost per fitting.
  • Potential problems for PEX radiant heating with iron-based components. If plain PEX tubing is used in a radiant heating system that has ferrous radiators or other parts, meaning they are made out of iron or its alloys, then there is the possibility of rust developing over time; if this is the case, then one solution is to have an "oxygen barrier" in these systems to prevent rust from developing. Most modern installations of PEX for heating use oxygen barrier coated PEX.
  • Odors, chemical taste, and possible health effects. There was controversy in California during the 2000s about health concerns. Several groups blocked adoption of PEX for concerns about chemicals getting into the water, either from chemicals outside the pipes, or from chemicals inside the pipes such as methyl tertiary butyl ether and tertiary butyl alcohol.[35] These concerns delayed statewide adoption of PEX for almost a decade. After substantial "back-and-forth legal wrangling", which was described as a "judicial rollercoaster", the disputing groups came to a consensus, and California permitted use of PEX in all occupancies.[36][37] An environmental impact report and subsequent studies determined there were no cause for concerns about public health from use of PEX piping.[36]

Government approvals

[edit]

PEX has been approved for use in all fifty states of the United States as well as Canada,[14] including the state of California, which approved its use in 2009.[19] California allowed the use of PEX for domestic water systems on a case-by-case basis only in 2007.[38] This was due mostly to concerns about corrosion of the manifolds (rather than the tubing itself) and California allowed PEX to be used for hydronic radiant heating systems but not potable water. In 2009, the Building Standards Commission approved PEX plastic pipe and tubing to the California Plumbing Code (CPC), allowing its use in hospitals, clinics, residences, and commercial construction throughout the state.[19] Formal adoption of PEX into the CPC occurred on August 1, 2009, allowing local jurisdictions to approve its general use,[39] although there were additional issues, and new approvals were issued in 2010 with revised wordings to the 2007 act.[40]

Alternative materials

[edit]

Alternative plumbing choices include

  • Aluminum plastic composite are aluminum tubes laminated on the interior and exterior with plastic layers for protection.[14]
  • Corrugated stainless steel tubing, continuous flexible pipes made out of stainless steel with a PVC interior and are air-tested for leaks.[14]
  • Polypropylene Pipe, similar in application to CPVC but a chemically inert material containing no harmful substances and reduced dangerous emissions when consumed by fire. It is primarily utilized in radiant floor systems but is gaining popularity as a leach-free domestic potable water pipe, primarily in commercial applications.
  • Polybutylene (PB) Pipe is a form of plastic polymer that was used in the manufacture of potable water piping from late 70's until 1995. However, it was discovered that the polyoxymethylene (POM or Acetal) connectors originally used to connect the polybutylene tubes were susceptible to stress enhanced chemical attack by hypochlorite additions (a common chemical used to sanitize water). Degraded connectors can crack and leak in highly stressed crimped areas, causing damage to the surrounding building structure. Later systems containing copper fittings do not appear to have issues with hypochlorite attack, but polybutylene has still fallen out of favor due to costly structural damage caused by earlier issues and is not accepted in Canada and U.S.

PEX-AL-PEX

[edit]

PEX-AL-PEX pipes, or AluPEX, or PEX/Aluminum/PEX, or Multilayer pipes are made of a layer of aluminum sandwiched between two layers of PEX. The metal layer serves as an oxygen barrier, stopping the oxygen diffusion through the polymer matrix, so it cannot dissolve into the water in the tube and corrode the metal components of the system.[41] The aluminium layer is thin, typically 1 or 2 mm, and provides some rigidity to the tube such that when bent it retains the shape formed (normal PEX tube will spring back to straight). The aluminium layer also provides additional structural rigidity such that the tube will be suitable for higher safe operating temperatures and pressures.

The use of AluPex tubing has grown greatly since 2010. It is easy to work and position. Curves may be easily formed by hand. Tube exists for use with both hot and cold water and also for gas.[citation needed]

This product in Canada has been discontinued due to water infiltrating between the Layers resulting in premature failures.

PEX tools

[edit]

There are two types of fitting that may be used. Crimped or compressive. Crimped connectors are less expensive but require a specialised crimping tool. Compression fittings are tightened with normal spanners and are designed to allow sections of the system to be easily disassembled, they are also popular for small works, esp. DIY, avoiding the need for extra tools.

A PEX tool kit includes a number of basic tools required for making fittings and connections with PEX tubing. In most cases, such kits are either bought at a local hardware store, plumbing supply store or assembled by either a home owner or a contractor. PEX tools kits range from under $100 and can go up to $300+. A typical PEX tool kit includes crimp tools, an expander tool for joining, clamp tools, PEX cutters, rings, boards, and staplers.[further explanation needed]

Multilayer AluPex tube and connector

Other uses

[edit]
  • Artificial joints: Highly cross-linked polyethylene is used in artificial joints as a wear-resistant material. Cross-linked polyethylene is preferred in hip replacement because of its resistance to abrasive wear. Knee replacement, however, requires PE made with different parameters because cross-linking may affect mechanical strength and there is greater stress-concentration in knee joints due to lower geometric congruency of the bearing surfaces. Manufacturers start with ultra high molecular weight polyethylene, and crosslink with either electron beam or gamma irradiation.
  • Dental applications: Some application of PEX has also been seen in dental restoration as a composite filling material.
  • Watercraft: PEX is also used in many canoes and kayaks. The PEX is listed by the name Ram-X, and other brand specific names. Because of the properties of cross-linked polyethylene, repair of any damage to the hull is rather difficult. Some adhesives, such as 3M's DP-8005, are able to bond to PEX, while larger repairs require melting and mixing more Polyethylene into the canoe/kayak to form a solid bond and fill the damaged area.
  • Power cable insulation: Cross-linked polyethylene is widely used as electrical insulation in power cables of all voltage ranges but it is especially well suited to medium voltage applications. It is the most common polymeric insulation material. The acronym XLPE is commonly used to denote cross-linked polyethylene insulation.
    XLPE automotive duct
  • Automotive ducts and housings: PEX also referred to as XLPE is widely used in the aftermarket automotive industry for cold air intake systems and filter housings. Its properties include high heat deflection temperature, good impact resistance, chemical resistance, low flexural modulus and good environmental stress crack resistance. This form of XLPE is most commonly used in rotational molding; the XLPE resin comes in the form of a 35 mesh (500 μm) resin powder.
  • Domestic appliances: Washing machines and dishwashers from Asko use a PEX inlet hose instead of using a double-walled rubber/plastic safety hose.

See also

[edit]

References

[edit]
  1. ^ a b c Elsner, Peter; Eyerer, Peter; Hirth, Thomas (2012). Domininghaus - Kunststoffe (8 ed.). Berlin Heidelberg: Springer-Verlag. p. 224. ISBN 978-3-642-16173-5.
  2. ^ a b c d e f Baur, Erwin; Osswald, Tim A. (October 2013). Saechtling Kunststoff Taschenbuch. Hanser, Carl. p. 443. ISBN 978-3-446-43729-6. Vorschau auf kunststoffe.de
  3. ^ a b Koltzenburg, Sebastian; Maskos, Michael; Nuyken, Oskar (2014). Polymere: Synthese, Eigenschaften und Anwendungen (1 ed.). Springer Spektrum. p. 406. ISBN 978-3-642-34773-3.
  4. ^ Ahmad, H; Rodrigue, D (2022). "Crosslinked polyethylene: A review on the crosslinking techniques, manufacturing methods, applications, and recycling". Polymer Engineering and Science. 62 (8): 2376. doi:10.1002/pen.26049.
  5. ^ Brown, E.N; Willms, R.B; Gray, G.T; et, al (2007). "Influence of Molecular Conformation on the Constitutive Response of Polyethylene: A Comparison of HDPE, UHMWPE, and PEX". Experimental Mechanics. 47 (3): 381–393. doi:10.1007/s11340-007-9045-9.
  6. ^ Selvin, M; Shah, S; Maria, H.J; et, al (2024). "Review on Recycling of Cross-Linked Polyethylene". Industrial Engineering and Chemistry Research. 63 (3): 1200–1214. doi:10.1021/acs.iecr.3c02580.
  7. ^ Ahmad, H; Rodrigue, D (2022). "Crosslinked polyethylene: A review on the crosslinking techniques, manufacturing methods, applications, and recycling". Polymer Engineering and Science. 62 (8): 2376. doi:10.1002/pen.26049.
  8. ^ Liu, S.Q; Gong, W.G; Zheng, B.C (2014). "The Effect of Peroxide Cross-Linking on the Properties of Low-Density Polyethylene". Journal of Macromolecular Science, Part B. 53 (1): 67–77. Bibcode:2014JMSB...53...67L. doi:10.1080/00222348.2013.789360.
  9. ^ Yussuf, A.A; Al-Saleh, M.A; Al-Enezi, S.T; Abraham, G (2021). "Effect of silane concentration on the properties of crosslinked linear low density polyethylene-montmorillonite nanocomposite". Polymer Composites. 42 (5): 2268–2281. doi:10.1002/pc.25975.
  10. ^ "High-Density Crosslinked Polyethylene (XLPE)". Poly Processing. Retrieved February 1, 2017.
  11. ^ a b c Whiteley, Kenneth S. (2011). "Polyethylene". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a21_487.pub2. ISBN 978-3527306732.
  12. ^ a b Kaiser, Wolfgang (2011). Kunststoffchemie für Ingenieure von der Synthese bis zur Anwendung (3 ed.). München: Hanser. ISBN 978-3-446-43047-1.
  13. ^ a b Günter Neroth, Dieter Vollenschaar: Wendehorst Baustoffkunde: Grundlagen – Baustoffe – Oberflächenschutz. 27. Auflage. Vieweg+Teubner Verlag/Springer Fachmedien, Wiesbaden 2011, ISBN 9783834899194, p. 931
  14. ^ a b c d e f g "PEX Pipe Markings". July 19, 2015. Retrieved 2015-07-30. All PEX pipe is manufactured with its design specifications listed directly on the pipe. These specifications are listed to explain the pipe's many standards as well as giving specific detailing about the manufacturer. The reason that all these specifications are given, are so that the installer is aware if the product is meeting standards for the necessary local codes. The labeling ensures the user that the tubing is up to all the standards listed.
  15. ^ a b c d e f Romano, Jay (September 3, 2006). "If Copper Pipes Are Too Costly ..." The New York Times. Retrieved 2011-07-09. The price of copper has nearly quadrupled over the last four years, and plumbers and do-it-yourselfers are taking a fresh look at alternatives to copper tubing and fittings. And what some are turning to is a flexible synthetic material called PEX.
  16. ^ Heavens, Alan J. (July 29, 2006). "Shortages Persist In Building Materials: Even as Demand for New Homes Falls, Cost of Cement and Copper Skyrockets'". The Philadelphia Inquirer. p. F25. Retrieved 2011-07-09. Recommended alternatives to copper piping include: (1) Cross-linked polyethylene, which is known as PEX and has been adopted by installers of radiant-floor heating since it neither corrodes nor develops pinhole leaks. PEX also resists chlorine and scaling, and uses fewer fittings than rigid plastic and metallic pipe. The piping is approved for potable hot- and cold-water plumbing systems as well as for hydronic heating systems in all plumbing and mechanical codes in the United States and Canada. (2) Aluminum plastic composite, a multipurpose pressure piping that can distribute hot and cold water indoors and outdoors, and also is well-suited for under-the-floor heating and snowmelt systems. It is made of aluminum tube laminated to interior and exterior layers of plastic. (3) Corrugated stainless-steel tubing, which is used as an alternative to traditional threaded black-iron gas piping for residential, commercial and industrial applications. It consists of a continuous, flexible stainless-steel pipe with an exterior PVC covering. The piping is produced in coils that are air-tested for leaks.
  17. ^ a b Stone, Barry (July 22, 2006). "50-Year-Old House Warrants Special Scrutiny". The Washington Post. Retrieved 2011-07-09. The use of galvanized steel water piping was abandoned in favor of copper in the late 1960s, and now the plumbing industry has moved from copper to PEX (cross-link polyethylene). The problem with old galvanized pipes is that they usually have internal rust build-up, which reduces water volume.... (Barry Stone => home inspector)
  18. ^ Heavens, Al (January 20, 2011). "Trying to keep radiant floor project out of hot water". Chicago Tribune. McClatchy/Tribune News. Retrieved 2011-07-09. Hydronic systems circulate water from a boiler or water heater through loops of polyethylene tubing, often called by the brand name Pex, but there are others. Tubing is typically installed on top of the subfloor in grooved panels or snap-in grids; clipped into aluminum strips on the underside of the floor; or embedded in poured concrete, or a lighter, concrete-like material in bathrooms or kitchens especially.
  19. ^ a b c d e f Mader, Robert P. (Sep 2, 2010). "California Approves PEX for Plumbing – Again". Contractor Mag. Retrieved 2011-07-09. PEX became part of the California Plumbing Code in August 2009, following the CBSC's January 2009 certification of an Environmental Impact Report (EIR) on PEX and the commission's ensuing unanimous adoption of regulations approving PEX water distribution systems.... The Commission's action allows the statewide use of PEX in hospitals, clinics, schools, residences and commercial structures.... The CBSC reinstated PEX with the caveats that underground PEX must be sleeved, the material had to stand up to recirculating hot water, the fittings won't de-zincify, and PEX systems had to be filled and flushed....
  20. ^ a b Heavens, Alan J. (August 11, 2006). "No Cool Solution to Removing Heated Tiles". The Philadelphia Inquirer. Retrieved 2011-07-09. I assume that the radiant floor heating involves piping that is embedded in Gypcrete, a lightweight blend of concrete and gypsum that, in concert with a shift to flexible PEX piping, has made installation easy and operation problem-free.
  21. ^ a b Television program Ed The Plumber, DIY Network, 2006
  22. ^ Spiegel, Jan Ellen (April 20, 2008). "The House That Green Built". The New York Times. Retrieved 2011-07-09. (Page 2 of 4) There is radiant floor heating, and the toilets use rainwater stored in a cistern. The floors, doors and wall paneling are reclaimed from vintage homes that were torn down elsewhere in the state. Instead of copper pipes, water will travel through Pex piping, less expensive flexible polyethylene tubes that are petroleum-based, but still may be greener than copper pipe. "It is a compromise," said Mr. Johnson, who said he worried a little about the health aspects of Pex. "I couldn't get a good read on that, to tell you the truth. I sort of got exhausted in asking a bunch of people."
  23. ^ "Inflation Adjusted Price of Copper". GuruFocus.com. Retrieved 2022-10-27.
  24. ^ a b Kogel, John (2009-07-13). "Pex Issues". Inspection News. Retrieved 2011-07-09. Once you've worked with PEX, you'll never go back to that other stinky glue stuff. We see copper stubs at the water heater (sometimes), the rest is PEX. Also, when they use the red and blue colors, hot is hot and cold is cold
  25. ^ "Fire Risks of Metallic Plumbing Systems Draw National Attention" (PDF). Lubrizol. 2003-01-03. Archived from the original (PDF) on 2016-09-16. Retrieved 2023-03-14.
  26. ^ Romano, Jay (January 28, 2009). "Before, and After, the Last Drop". The New York Times. Retrieved 2011-07-09. Pipes, traditionally made of copper, can burst if the water inside freezes, because water expands when frozen, but copper does not. If the water expands too much, it has nowhere to go but out, forcing the pipe to burst at the frozen spot. Tom Kraeutler, a host of the syndicated radio show "The Money Pit", said most houses have one particular spot where the pipes tend to freeze. If there is fairly consistent freezing in an area, he said, it is wise to reroute the pipes and to replace them with PEX — a flexible plastic tubing that is much less likely to burst than copper. Like copper, though, PEX can freeze, as Mr. Carter, who moved in December, now knows. The house was built with modern materials, including PEX, but because the place was only six years old, he didn't think he had to worry about frozen pipes.
  27. ^ Downs, Stacy (February 24, 2006). "Frozen Pipes Can Lead to Flood of Woe". Chicago Tribune. Knight Ridder/Tribune. Retrieved 2011-07-09. Frozen pipes break differently depending on the material, Water said. Copper rips, PVC (polyvinyl chloride) shatters and PEX (polyethylene) swells and tears.
  28. ^ a b Maxwell, Steve (Jul 14, 2007). "Drywall may not work on waterfront". Toronto Star. Retrieved 2011-07-09. Start by making sure that all runs of water supply pipe are sloped downwards slightly to central drain valves. Also, be sure to specify that all drain traps remain accessible, and be the kind that includes a removable plug on the bottom. As an added precaution, install PEX-al-PEX supply pipes instead of copper. If water accidentally remains in these pipes, they'll endure five or six freeze-thaw cycles without splitting. Copper pipe, on the other hand, splits apart promptly when it contains water that freezes.
  29. ^ a b Maxwell, Steve (Feb 28, 2009). "Put Basement Repair to Wet Weather Test". Toronto Star. Retrieved 2011-07-09. Q: Is it safe to use pipe wrap insulation on PEX water supply pipes? In a magazine put out by a home improvement retailer, it warns that a chemical reaction between insulation and PEX will eventually destroy the pipes. Is this true? A: To answer your question, I contacted one of the world's largest producers of PEX pipe. The only potential issue they know of has to do with certain types of adhesives touching the pipe surface. PEX includes antioxidants for stabilizing against chlorine, and these antioxidants can become destabilized in a reaction with adhesives, possibly aging the pipe prematurely. That said, they don't know of any issues relating to a chemical reaction between PEX and conventional foam pipe wrap insulation. I've installed foam insulation on PEX in my own house about a year ago, and there's no visible signs of trouble.
  30. ^ a b Kibbel, Bill; Katen, Jim; Kienitz, Nolan E. (2006–2007). "PEX and sunlight issues". The Inspector's Journal. Archived from the original on 2011-10-03. Retrieved 2011-07-09. Well, the manufacturers' instruction I've read and the Plastic Pipe Assoc. says it can't be installed where exposed to direct sunlight.... I've heard of some pretty serious problems with PEX that's exposed to sunlight. Your client's concerns are valid.... Another big factor is how the product has been "handled" from manufacture to site installation.... I had a client, with a new home, that was purchased back by the plumbing company due to mis-handling of the PEX that had caused over 10 leaks in less than 7 months.
  31. ^ Bates, S.L. 2005. Damage to common plumbing materials caused by overwintering Leptoglossus occidentalis (Hemiptera: Coreidae). Canadian Entomologist 137: 492-496.[journals.cambridge.org/article_S0008347X00002807]
  32. ^ a b Pope, Jeff (Jan 22, 2009). "Pipe work begins in homes involved in Kitec lawsuit". Las Vegas Sun. Retrieved 2011-07-09. The polyethylene pipes contained a thin layer of aluminum that held its shape as plumbers twisted and bent it. Plastic pipes without the aluminum require more anchoring because they spring back to a straight line. The pipes aren't failing though. It's the brass fittings that connect the pipes to copper fixtures on valves, water heaters and softeners. The problem is a chemical reaction known as dezincification, which accelerates corrosion in brass fittings when they are exposed to oxygen and moisture. Brass is an alloy primarily composed of copper and zinc. When dezincification occurs, zinc leaches out of the fittings, leaving a blockage of zinc oxide that leads to leaks, restricted water flow and breaks.
  33. ^ Pope, Jeff (Feb 23, 2009). "Plumbing Problems May Continue to Grow". Las Vegas Sun. Retrieved 2011-07-09. Yellow brass typically has about 30 percent zinc. When the yellow brass is exposed to Southern Nevada's mineral-rich hard water, the zinc is removed and builds up inside the pipes leading to blockages and breaks, according to court documents in the Kitec lawsuit. The process is called dezincification. Red brass typically has 5 percent to 10 percent zinc and is being used to replace the yellow brass in valley homes built by Richmond American and Pulte.
  34. ^ Menelly, Ted (2009-07-13). "Pex Issues". Inspection News. Retrieved 2011-07-09. Just a couple of leaks at poorly applied connections. Other than that I have not really seen any. Most, not all, but most new homes have PEX. There are some that still use only copper. have seen it used a lot in remodel with many homes I have inspected that have had repiping. It is easier to run through the attics and crawls. I guess it has been, what, 10 years or so since its major use. I guess only time will tell. There were many complaints in the very beginning but not much now.
  35. ^ "California Building Standards Code" (PDF). State of California. 2007. Retrieved 2011-08-15. ... PEX material is susceptible to chemical leaching, both from the outside environment and chemicals leaching out of the PEX material itself....
  36. ^ a b "Pipe Rollercoaster: After a recent exclusion, PEX pipe is back in the California Plumbing Code". Plumbing & Mechanical. October 1, 2010. Retrieved 2011-08-15. ... controversy in California ... resulting in a flurry of back-and-forth legal wrangling over health, safety and performance issues related to the flexible pipe.... That judicial rollercoaster finally came to a halt in mid-August when a coalition of consumer, environmental, public health and labor organizations reached an agreement with the state and the plastic pipe industry ... As a result, the California Building Standards Commission now allows the use of PEX in all occupancies...
  37. ^ Sweet, Jack (October 1, 2010). "What was that flurry of activity this past summer?". Reeves Journal. Retrieved 2011-08-15. It boiled up, came to a head and was then over almost as quickly as it takes to tell the tale. PEX, formally known as crosslinked polyethylene tubing-was given the administrative heave-ho from the California plumbing codes. Then, almost as quickly as the word could get passed out to the industry-at-large, PEX was back the state's good graces, albeit with a few stipulations on its use that weren't there before.
  38. ^ 2007 CPC Table 6-4 Footnote 1; previously: 2001 CPC 604.1 #2
  39. ^ "(Press Release) PEX Plastic Pipe Unanimously Added to California Plumbing Code; State Officials Certify Favorable Environmental Impact Report". Reuters. January 27, 2009. Archived from the original on September 13, 2012. Retrieved June 23, 2009.
  40. ^ "Building Standards Commission". State of California. 2010. Retrieved 2011-07-09. On August 16, 2010, the California Building Standards Commission certified the Final Environmental Impact Report and approved regulations allowing the use of PEX tubing. The Approved Final Express Terms document represents the final language that will be published into the 2007 California Plumbing Code and the 2010 California Plumbing Code (Effective Jan. 1, 2011) with the strikeout and underlining removed for clarity. All remaining agencies' rulemaking documents appearing on this page, were also approved by the Commission, but do not have the strikeout and underlined removed.
  41. ^ "PEX choices". Home Heating Systems Newsletter. Archived from the original on June 11, 2008. Retrieved 2008-06-12.
[edit]