2024 in paleontology
| |||
---|---|---|---|
Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2024.
2024 in science |
---|
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
Flora
[edit]Plants
[edit]"Algae"
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Hamad |
Pliocene |
Shagra Formation |
A species of Amphiroa. |
||||
Gen. et sp. nov |
Krings |
Devonian |
Windyfield chert |
A probable unicellular alga. Genus includes new species C. amoenum. |
||||
Gen. et sp. nov |
Valid |
Liu et al. |
Ediacaran |
A possible brown alga. The type species is H. yuxiensis. Announced in 2023; the final version of the article naming it was published in 2024. |
Phycological research
[edit]- Evidence from genomic data, interpreted as indicating that the brown algae originated during the Ordovician but their major diversification happened during the Mesozoic, is presented by Choi et al. (2024).[5]
- Kiel et al. (2024) report the discovery of kelp holdfasts from the Oligocene strata in Washington State (United States), providing evidence of the presence of kelp in the northeastern Pacific Ocean since the earliest Oligocene.[6]
Fungi
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Mahato & Khan |
Miocene to Pliocene |
A species of Asterina. |
|||||
Gen. et sp. nov |
Mao, Guo & Huang in Guo et al. |
Cretaceous |
A member of Agaricales of uncertain affinities, a possible member of Marasmiineae. The type species is M. cretaceum. |
|||||
Sp. nov |
Valid |
Kundu & Khan |
Miocene |
A member of the family Meliolaceae. Announced in 2023; the final version of the article naming it was published in 2024. |
||||
Sp. nov |
Wang et al. |
Pliocene |
Mangbang Formation |
A member of the family Meliolaceae. |
||||
Gen. et sp. nov |
Guo et al. |
Cretaceous |
Burmese amber |
A member of Agaricales of uncertain affinities, a possible member of Marasmiineae. The type species is M. burmitis. |
||||
Sp. nov |
Valid |
Kundu & Khan |
Miocene |
A member of Xylariales belonging to the family Zygosporiaceae. |
||||
Sp. nov |
Mahato et al. |
Miocene |
Chunabati Formation |
A member of Xylariales belonging to the family Zygosporiaceae. |
||||
Sp. nov |
Kundu & Khan |
Miocene |
A member of Xylariales belonging to the family Zygosporiaceae. |
Mycological research
[edit]- Garcia Cabrera & Krings (2024) describe fungi colonizing bulbils of Palaeonitella cranii from the Devonian Rhynie chert, interpreted as distinct from fungi colonizing the axes and branchlets of P. cranii, which might indicate organ-specific colonization.[14]
Cnidarians
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Luo et al. |
Carboniferous |
Shiqiantan Formation |
A rugose coral belonging to the group Stauriida and the family Bothrophyllidae. |
|||
Bothrophyllum junggarense[15] |
Sp. nov |
Valid |
Luo et al. |
Carboniferous |
Shiqiantan Formation |
A rugose coral belonging to the group Stauriida and the family Bothrophyllidae. |
||
Sp. nov |
Valid |
Luo et al. |
Carboniferous |
Shiqiantan Formation |
A rugose coral belonging to the group Stauriida and the family Cyathopsidae. |
|||
Sp. nov |
Liu et al. |
Cambrian (Fortunian) |
A medusozoan belonging to the possible conulatan family Hexangulaconulariidae. |
|||||
Sp. nov |
Valid |
El-Desouky |
Carboniferous (Kasimovian) |
Aheimer Formation |
A rugose coral belonging to the group Stauriida and the family Antiphyllidae. |
Cnidarian research
[edit]- A study on the phylogenetic relationships of extant and extinct scleractinians, focusing on the Triassic and Jurassic members of the group, is published by Lathuilière et al. (2024).[18]
- A study on the diversity of corals from the Burdigalian to Langhian Wadi Waqb Member of the Jabal Kibrit Formation (Saudi Arabia) is published by Pisapia et al. (2024), who interpret the composition of the studied assemblages as indicating that young Red Sea had a connection to the Mediterranean Sea, but did not have a direct connection to the Indian Ocean.[19]
Arthropods
[edit]Bryozoans
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of Cheilostomata belonging to the family Antroporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Aspidostomatidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Aspidostomatidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Aspidostomatidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Aspidostomatidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Aspidostomatidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
Possibly a member of the family Bryocryptellidae. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of Cheilostomata belonging to the group Flustrina and the superfamily Microporoidea; the type genus of the new family Cardabiellidae. The type species is C. ovicellata. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Onychocellidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Microporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Microporidae. |
|||
Sp. nov |
Taboada, Pagani & Cúneo |
Late Cretaceous (Maastrichtian) |
A species of Conopeum. |
|||||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Lepraliellidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Lepraliellidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Calloporidae. |
|||
Sp. nov |
Valid |
Ernst & Buttler |
Devonian (Frasnian) |
Ferques Formation |
A trepostome belonging to the family Stenoporidae. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Macroporidae. The type species is E. molesta. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of Cyclostomata belonging to the family Frondiporidae. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of Cheilostomata belonging to the superfamily Microporoidea and the family Pyrisinellidae. The type species is F. tenuiaviculata. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of Cheilostomata of uncertain affinities, with similarities to members of the families Brydonellidae, Peedeesellidae and Romancheinidae. The type species is H. distincta. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Hippothoidae. The type species is H. repens. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A species of Idmonea. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A species of Idmonea. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Cardabiellidae. The type species is I. clavata. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Lichenoporidae. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Arachnopusiidae. The type species is K. kenozooidea. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Aspidostomatidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Oncousoeciidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Cribrilinidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Cribrilinidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Cribrilinidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Onychocellidae. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Onychocellidae. The type species is P. simulata. |
|||
Gen. et 2 sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Calloporidae. The type species is P. berningi; genus also includes P. lacunosa. |
|||
Gen. et 2 sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Calloporidae. The type species is P. cardabiense; genus also includes P. secundum. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Peedeesellidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Tubuliporidae. |
|||
Gen. et sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Foveolariidae. The type species is P. fortunata. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of Cyclostomata belonging to the family Frondiporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Onychocellidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Monoporellidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A species of Stomatopora. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A species of Stomatopora. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Cribrilinidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Cribrilinidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Stomatoporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Stomatoporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Stomatoporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Calloporidae. |
|||
Sp. nov |
Valid |
Håkansson, Gordon & Taylor |
Late Cretaceous (Maastrichtian) |
Korojon Formation |
A member of the family Calloporidae. |
Brachiopods
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Valid |
Baranov & Nikolaev |
Devonian (Lochkovian and Pragian) |
Solovyikha Limestone |
A member of Spiriferida belonging to the family Delthyrididae and the subfamily Howellellinae. The type species is "Howellella" mercuriformis Kulkov (1963); genus also includes A. propria (Modzalevskaya, 1974). |
|||
Sp. nov |
Valid |
Baranov & Nikolaev |
Devonian (Pragian) |
A member of Spiriferida belonging to the subfamily Howellellinae. |
||||
Gen. et comb. nov |
Valid |
Hints |
Ordovician (Sandbian) |
A member of Orthida belonging to the group Enteletoidea and the family Draboviidae. The type species is "Dalmanella" kegelensis Alichova (1953). |
||||
Gen. et sp. nov |
Valid |
Jin et al. |
Silurian (Rhuddanian) |
Odins Fjord Formation |
A member of Pentamerida belonging to the superfamily Pentameroidea and the family Virgianidae. The type species is B. balderi. |
|||
Nom. nov |
Valid |
Gaudin |
Carboniferous |
A member of the family Rugosochonetidae; a replacement name for Robertsella Chen & Shi (2003). |
||||
Sp. nov |
Benedetto, Lavié & Salas |
Silurian (Ludfordian-Pridolian) |
Los Espejos Formation |
A craniopsid brachiopod. |
||||
Craniops speculum[27] |
Sp. nov |
Benedetto, Lavié & Salas |
Silurian (Gorstian) |
Los Espejos Formation |
A craniopsid brachiopod. |
|||
Sp. nov |
Valid |
Jin et al. |
Ordovician (Katian) |
Merqujoq Formation |
A member of Pentamerida belonging to the family Virgianidae. |
|||
Sp. nov |
Valid |
Gallagher & Harper |
Silurian |
|||||
Sp. nov |
Valid |
Jin & Harper |
Ordovician (Hirnantian) |
A member of Orthida belonging to the family Glyptorthidae. |
||||
Sp. nov |
Baranov, Kebria-Ee Zadeh & Blodgett |
Devonian (Famennian) |
Khoshyeilagh Formation |
A member of Rhynchonellida. |
||||
Sp. nov |
Valid |
Gallagher & Harper |
Silurian |
|||||
Sp. nov |
Valid |
Jin & Harper |
Ordovician (Hirnantian) |
A member of Strophomenida belonging to the family Strophomenidae. |
||||
Sp. nov |
Valid |
Jin et al. |
Silurian (Aeronian) |
Odins Fjord Formation |
A member of Pentamerida belonging to the superfamily Stricklandioidea and the family Kulumbellidae. |
|||
Sp. nov |
Valid |
Gallagher & Harper |
Silurian |
|||||
Sp. nov |
Valid |
Gallagher & Harper |
Silurian |
|||||
Ssp. nov |
Baranov, Kebria-Ee Zadeh & Blodgett |
Devonian (Famennian) |
Khoshyeilagh Formation |
A member of Rhynchonellida. |
||||
Sp. nov |
Valid |
Gallagher & Harper |
Silurian |
|||||
Sp. nov |
Valid |
Mergl |
Silurian (Sheinwoodian) |
Motol Formation |
A siphonotretid brachiopod. |
|||
Sp. nov |
Baranov, Kebria-Ee Zadeh & Blodgett |
Devonian (Famennian) |
Khoshyeilagh Formation |
A member of Rhynchonellida. |
||||
Ssp. nov |
Baranov & Blodgett |
Devonian (Pragian) |
Soda Creek Limestone |
Published online in 2024, but the issue date is listed as December 2023. |
||||
Gen. et comb. et sp. nov |
Valid |
Mergl |
Silurian (Sheinwoodian to Ludfordian) |
Motol Formation |
A discinid brachiopod. The type species is "Discina" vexata Barrande (1879); genus also includes new species P. postvexata. |
|||
Sp. nov |
Baranov & Blodgett |
Devonian (Pragian) |
Soda Creek Limestone |
Published online in 2024, but the issue date is listed as December 2023. |
||||
Gen. et sp. nov |
Baranov & Blodgett |
Devonian (Pragian) |
Soda Creek Limestone |
Genus includes new species R. lata. Published online in 2024, but the issue date is listed as December 2023. |
||||
Sp. nov |
Valid |
Mergl |
Silurian (Sheinwoodian) |
Motol Formation |
A discinid brachiopod. |
|||
Gen. et sp. et comb. nov |
Valid |
Baranov & Nikolaev |
Devonian |
A member of Spiriferida belonging to the subfamily Howellellinae. The type species is T. latus; genus also includes T. pseudoconcinnus (Nikiforova, 1960) and T. gurjevskensis (Rzhonsnitskaya, 1952). |
||||
Gen. 2 sp. nov |
Baranov, Kebria-Ee Zadeh & Blodgett |
Devonian (Famennian) |
Khoshyeilagh Formation |
A member of Rhynchonellida. Genus includes new species T. azadshahrensis and T. qeshlaqensis. |
||||
Sp. nov |
Liu et al. |
Devonian |
Qujing Formation |
A member of Spiriferida belonging to the family Reticulariidae. |
||||
Sp. nov |
Valid |
Jin et al. |
Silurian (Rhuddanian) |
Turesø Formation |
A member of Pentamerida belonging to the family Virgianidae. |
Brachiopod research
[edit]- A study on evolution of Terebratulida, Rhynchonellida, Spiriferinida and Athyridida from Permian to Quaternary is published by Guo et al. (2024), who find that after the Permian–Triassic extinction event, in spite of lower taxonomic diversity, brachiopods regained pre-extinction levels of morphological diversity.[34]
- Liang et al. (2024) describe fossil material of Anomaloglossa porca from the Ordovician (Sandbian) Pingliang Formation (China), extending known geographical range of the species from Gondwana and Tarim to North China Platform, and interpret the studied fossils as indicative of an infaunal lifestyle of A. porca.[35]
- A study on muscle scars and the hinge structure of Rafinesquina is published by Dattilo et al. (2024), who find that the studied brachiopod was able to gape widely, which eliminated constraints on its feeding orientation and enabled effective valve clearing.[36]
- Shapiro (2024) describes fossil material of Dzieduszyckia from the Devonian Slaven Chert (Nevada, United States), possibly indicative of the presence of a species distinct from D. sonora in Nevada, and interprets Dzieduszyckia as capable of survival in both seep and non-seep settings, which enabled it be primed for the Famennian biotic crises and give rise to later dimerelloids adapted to living in seep or vent settings.[37]
- Harper & Peck (2024) present evidence of disappearance of large brachiopods from shallow tropical waters after the Jurassic period, interpreted as mainly caused by increase of durophagous predation in these environments.[38]
Molluscs
[edit]Echinoderms
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Liu et al. |
Ordovician |
Madaoyu Formation |
A rhombiferan belonging to the group Dichoporita and the family Cheirocrinidae. |
||||
Gen. et sp. nov |
Valid |
Płachno et al. |
Middle Jurassic (Bajocian) |
Kérdacha Formation |
A crinoid belonging to the group Comatulida and the family Thiolliericrinidae. The type species is C. zamori. |
|||
Sp. nov |
Gale & Jagt |
Late Cretaceous (Campanian) |
A crinoid belonging to the group Cyrtocrinida. |
|||||
Sp. nov |
Valid |
Ausich, Wilson & Toom |
Silurian (Rhuddanian) |
Varbola Formation |
A cladid crinoid belonging to the group Cyathoformes. |
|||
Sp. nov |
In press |
Bohatý, Ausich & Becker |
Devonian (Frasnian) |
Prüm Syncline |
A crinoid. |
|||
Sp. nov |
Valid |
Pauly & Haude |
Devonian (Famennian) |
Velbert Formation |
A sea urchin belonging to the family Hyattechinidae. |
|||
Hyattechinus velbertensis[44] |
Sp. nov |
Valid |
Pauly & Haude |
Devonian (Famennian) |
Velbert Formation |
A sea urchin belonging to the family Hyattechinidae. |
||
Sp. nov |
Valid |
Roux et al. |
Eocene (Lutetian) |
A crinoid belonging to the group Isocrinida and the family Balanocrinidae. |
||||
Sp. nov |
Valid |
Pauly & Haude |
Devonian (Famennian) |
Velbert Formation |
A sea urchin belonging to the family Lepidocentridae. |
|||
Sp. nov |
In press |
Bohatý, Ausich & Becker |
Devonian (Frasnian) |
Prüm Syncline |
A eucamerate crinoid. |
|||
Sp. nov |
Valid |
Schlüter |
Late Cretaceous (Campanian) |
|||||
Sp. nov |
Valid |
Thuy et al. |
Late Jurassic (Kimmeridgian) |
A species of Ophiactis. |
||||
Sp. nov |
Valid |
Blake & Lefebvre |
Ordovician (Katian) |
Lower Ktaoua-Upper Tiouririne formations |
||||
Sp. nov |
Valid |
Rozhnov & Anekeeva |
Ordovician |
A cornutan. |
||||
Phyllocystis cellularis[49] |
Sp. nov |
Valid |
Rozhnov & Anekeeva |
Ordovician |
A cornutan. |
|||
Sp. nov |
Valid |
Brower, Brett & Feldman |
Ordovician (Katian) |
A glyptocrinid camerate crinoid. |
||||
Sp. nov |
In press |
Salamon et al. |
A feather star. |
|||||
Gen. et sp. nov |
Valid |
Pauly & Haude |
Devonian (Famennian) |
Velbert Formation |
A sea urchin belonging to the family Proterocidaridae. The type species is T. multiserialis. |
|||
Gen. et 2 sp. nov |
Valid |
Pauly & Haude |
Devonian (Famennian) |
Velbert Formation |
A sea urchin belonging to the family Archaeocidaridae. The type species is V. mirabilis; genus might also include V? helios. |
|||
Sp. nov |
Wang et al. |
Mantou Formation |
Research
[edit]- A review of the early evolution of echinoderms is published by Rahman and Zamora (2024). [53]
- Evidence of increase of diversity of adaptations to different life habits throughout the evolutionary history of Cambrian and Ordovician echinoderms is presented by Novack-Gottshall et al. (2024).[54]
- Bohatý et al. (2024) describe new fossil material of Monstrocrinus from the Devonian strata in Germany, and reinterpret Monstrocrinus as an attached, stalked echinoderm.[55]
- A study on the phylogenetic relationships and morphological diversity of members of Paracrinoidea is published by Limbeck et al. (2024).[56]
- García-Penas et al. (2024) provide evidence of the presence of stalked crinoids belonging to the group Isocrinida in the shallow lagoon environment in northeast Spain during the Aptian, and interpret the absence of extant stalked crinoids from shallow-marine habitats as likely caused by predation pressure.[57]
- The youngest fossil material of shallow-sea stalked crinoids reported to date is described from the middle Miocene shallow nearshore marine facies in Poland by Salamon et al. (2024).[58]
Hemichordates
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Gutiérrez-Marco & Maletz |
Ordovician (Tremadocian) |
A graptolite belonging to the family Dendrograptidae. |
|||||
Gen. et sp. nov |
Disputed |
Yang et al. |
The type species is C. pelagobenthos. Originally described as an acorn worm; Maletz (2024) contested this identification, arguing that the fossil material of C. pelagobenthos might represent algal remains, a faecal string or a coprolite.[61] |
|||||
Sp. nov |
Lerosey-Aubril et al. |
Cambrian (Drumian) |
A pterobranch. |
|||||
Sp. nov |
Lerosey-Aubril et al. |
Cambrian (Drumian) |
Marjum Formation |
A pterobranch. |
Hemichordate research
[edit]- Review of the fossil record and evolutionary history of acorn worms and pterobranchs is published by Maletz (2024).[61]
- A study on the locomotion of members of the graptolite genus Demirastrites, providing evidence of rotating locomotory pattern and evolution of morphology in the Demirastrites lineage resulting in increased stability and higher rotation velocity, is published by Shijia, Tan & Wang (2024).[63]
Conodonts
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Karádi |
Late Triassic (Norian) |
A member of the family Gondolellidae. |
||||
Sp. nov |
Valid |
Nazarova & Soboleva |
Devonian (Frasnian) |
Ust'-Yarega Formation |
||||
Icriodus quartadecimensis[65] |
Sp. nov |
Valid |
Nazarova & Soboleva |
Devonian (Frasnian) |
Ust'-Yarega Formation |
|||
Ssp. nov |
Valid |
Orchard & Golding |
Middle Triassic |
|||||
Neogondolella excentrica sigmoidalis[66] |
Ssp. nov |
Valid |
Orchard & Golding |
Middle Triassic |
||||
Neogondolella quasiconstricta[66] |
Sp. nov |
Valid |
Orchard & Golding |
Middle Triassic |
||||
Neogondolella quasicornuta[66] |
Sp. nov |
Valid |
Orchard & Golding |
Middle Triassic |
||||
Sp. nov |
Valid |
Tagarieva |
Devonian (Famennian) |
Research
[edit]- Evidence of increased control over biomineralization throughout the early evolution of the conodont feeding apparatus is presented by Shirley et al. (2024).[68]
- Redescription of Stiptognathus borealis is published by Zhen (2024).[69]
- Voldman et al. (2024) report the discovery of Moscovian conodonts from the Río del Peñón Formation (La Rioja Province, Argentina) representing the southernmost occurrence of members of the group in the high latitudes of Gondwana from the Late Paleozoic.[70]
- Evidence indicating that the morphological and taxonomic diversity of conodonts was more affected by the Capitanian mass extinction event than by Permian–Triassic extinction event, and that both extinction events were followed by morphological innovation in conodonts, is presented by Xue et al. (2024).[71]
- Evidence from the study of conodont-bearing bromalites from the Lower Triassic Qinglong Formation (China), interpreted as indicating that conodonts were an important food source for Early Triassic crustaceans, ammonites, ray-finned fishes and coelacanths, is presented by Yao et al. (2024).[72]
- Ye et al. (2024) provide a redescription and revised diagnosis of Triassospathodus anhuinensis.[73]
- A study on the multielement apparatus of Gladigondolella tethydis is published by Golding & Kılıç (2024), who interpret their findings as supporting the interpretation of Cratognathodus elements as belonging to the apparatus of G. tethydis.[74]
Fish
[edit]Amphibians
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
MacDougall et al. |
Early Permian |
A recumbirostran belonging to the family Brachystelechidae. The type species is B. subcolossus. |
|||||
Sp. nov |
Valid |
Ponstein, MacDougall & Fröbisch |
Early Permian |
A member of the family Diadectidae. |
||||
Sp. nov |
Valid |
Uliakhin & Golubev |
Permian |
|||||
Gen. et sp. nov |
Valid |
Marsicano et al. |
Early Permian |
A stem tetrapod related to colosteids. The type species is G. jennyae. |
||||
Gen. et sp. nov |
Valid |
So, Pardo & Mann |
Early Permian |
An amphibamiform temnospondyl. The type species is K. gratus. |
||||
Gen. et comb. nov |
Valid |
Ponstein, MacDougall & Fröbisch |
Permian |
A member of the family Diadectidae. The type species is "Diadectes" sanmiguelensis Lewis & Vaughn (1965). |
||||
Kwatisuchus[80] | Gen. et sp. nov | Pinheiro et al. | Early Triassic | Sanga do Cabral Formation | Brazil | A benthosuchid temnospondyl. The type species is K. rosai. | ||
Sp. nov |
Valid |
Schoch & Moreno |
Early Triassic (Olenekian) |
|||||
Gen. et sp. nov |
Valid |
Werneburg et al. |
An eryopid temnospondyl. The type species is S. boldi. |
|||||
Sp. nov |
Gómez et al. |
Miocene |
Mauri Formation |
A species of Telmatobius. |
||||
Gen. et sp. nov |
Valid |
Santos et al. |
Oligocene |
A typhlonectid caecilian. The type species is Y. acrux. |
Research
[edit]- A study on the fossils and paleosols of the Devonian Hervey Group (New South Wales, Australia) is published by Retallack (2024), who interprets his findings as indicating that Metaxygnathus lived within streams among subhumid woodlands, and argues that tetrapod limbs and necks most likely evolved in woodland streams.[85]
- Porro, Martin-Silverstone & Rayfield (2024) redescribe the anatomy of the skull of Eoherpeton watsoni and present a new, three-dimensional reconstruction of the skull.[86]
- A study on changes of the diversity of the temnospondyls from India and South-East Asia throughout the Triassic period is published by Chakravorti, Roy & Sengupta (2024).[87]
- Redescription of the skeletal anatomy and a study on the affinities of Plagiosaurus depressus is published by Witzmann & Schoch (2024).[88]
- So & Mann (2024) revise temnospondyl fossils from the Moenkopi Formation (Arizona, United States), and report evidence of the presence of a member of Brachyopoidea with large, robust teeth, distinct from Hadrokkosaurus bradyi and Vigilius wellesi.[89]
- Redescription and a study on the affinities of Hyperokynodon keuperinus is published by Schoch (2024).[90]
- A study on the affinities of Chinlestegophis jenkinsi is published by Marjanović et al. (2024), whose phylogenetic analysis doesn't support the interpretation of C. jenkinsi and stereospondyls in general as stem caecilians.[91]
- A study on the morphology and histology of the humerus and femora of Kulgeriherpeton ultimum is published by Skutschas et al. (2024).[92]
- Syromyatnikova et al. (2024) describe fossil material of a member of the genus Andrias from the Pliocene Belorechensk Formation (Krasnodar Krai, Russia), representing one of the geologically youngest and easternmost records of giant salamanders in Europe reported to date.[93]
- A specimen of Gansubatrachus qilianensis preserved with eggs within its body, interpreted as a skeletally immature gravid female, is described from the Lower Cretaceous Zhonggou Formation (China) by Du et al. (2024).[94]
- Santos, Carvalho & Zaher (2024) describe fossil material of an indeterminate neobatrachian frog from the Eocene–Oligocene Aiuruoca Basin (Brazil), expanding known diversity of frogs from the studied unit.[95]
- A study on the taphonomy of Eocene frog fossils from the Geiseltal Lagerstätte (Germany) is published by Falk et al. (2024), who find no evidence of silicification of soft tissues, as well as no evidence of preservation of most of the soft tissues reported as preserved in earlier studies, interpret the fossil microbodies preserved with the frogs as more likely to be melanosomes than bacteria, and interpret the mode of soft tissue preservation in frogs from Geiseltal as similar to those of other fossil vertebrates from lacustrine ecosystems.[96]
- New assemblage of frog fossils, including possible brachycephaloids, odontophrynids and hemiphractids, is described from the Eocene Geste Formation (Argentina) by Gómez et al. (2024).[97]
- A diverse assemblage of amphibian fossils is described from the Miocene and Pliocene strata from the Hambach surface mine (Germany) by Villa, Macaluso & Mörs (2024), who interpret the studied fossils as indicative of a humid climate persisting in the area throughout the Neogene.[98]
- New information on the morphology and distribution of Kotlassia prima, based on the study of remains from five localities in Eastern Europe, is published by Bulanov (2024), who interprets the studied remains as extending the stratigraphic range of Kotlassia up to the terminal Permian, as well as suggestive of more terrestrial ecology for the adult state of K. prima compared to its late Permian relatives, and indicating that K. prima was a predator with a wide trophic niche.[99]
- Reisz, Maho & Modesto (2024) reevaluate the affinities of recumbirostrans and lysorophians, arguing that the studied tetrapods were not amniotes.[100]
- Modesto (2024) reviews the phylogenetic studies that recovered diadectomorphs or recumbirostrans within the crown group of Amniota, and argues that the data presented so far is not sufficient to confidently classify both groups as amniotes.[101]
- Voigt et al. (2024) described diadectid footprints associated with a partial scaly body impression from the Permian strata in Poland, providing evidence of the presence of horned scales in tetrapods close to the origin of amniotes.[102]
Reptiles
[edit]Synapsids
[edit]Non-mammalian synapsids
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Mao et al. |
Early Jurassic |
A morganucodontan-like mammaliaform. The type species is D. youngi. |
||||
Sp. nov |
Valid |
Martin et al. |
Late Jurassic (Kimmeridgian) |
|||||
Gen. et sp. nov |
Averianov et al. |
Early Cretaceous |
A tegotheriid docodont. The type species is E. ichchi. |
|||||
Gen. et sp. nov |
Valid |
Mao et al. |
Middle Jurassic (Bathonian–Callovian) |
A shuotheriid mammaliaform. The type species is F. chowi. |
||||
Gen. et sp. nov |
In press |
Liu & Abdala |
Early Triassic |
Jiucaiyuan Formation |
A therocephalian belonging to the group Baurioidea. The type species is J. confusus. |
|||
Gen. et comb. nov |
Valid |
Duhamel et al. |
A basal dicynodont. New genus for "Eodicynodon" oelofseni, the type species. |
|||||
Gen. et sp. nov |
Valid |
Kerber et al. |
Triassic |
A traversodontid cynodont. The type species is P. franciscaensis. |
||||
Gen. et sp. nov |
Valid |
Martinelli et al. |
Triassic |
A chiniquodontid cynodont. The type species is R. nenoi. |
Research
[edit]- Singh et al. (2024) provide evidence of a dramatic shift in the jaw functional morphology of carnivorous synapsids across the early-middle Permian transition, and interpret their findings as indicative of changes of feeding ecologies of predatory synapsids related to increasingly dynamic behaviors and interactions in the studied time interval.[111]
- Jones, Angielczyk & Pierce (2024) reconstruct the range of motion of intervertebral joints of eight non-mammalian synapsids, and argue that several key aspects of mammalian vertebral function first evolved before the appearance of the mammalian crown group.[112]
- Evidence of functional differentiation of teeth of Mesenosaurus efremovi is presented by Maho et al. (2024).[113]
- Maho, Holmes & Reisz (2024) describe new fossil material of large-bodied synapsids from the Richards Spur locality (Oklahoma, United States), including fossil material of a sphenacodontid which might be distinct from known members of the group and the first ophiacodontid material from this locality; the authors use photography, stipple drawings and coquille drawings for visual representation of the studied material, and argue that three forms of visual representation provide more information about the specimens compared to only using photographs.[114]
- Benoit et al. (2024) report evidence of neurological adaptations of Cistecynodon parvus to low-frequency hearing and low-light conditions, evidence that facial bosses of Pachydectes elsi were likely richly innervated and better suited for display, communication or species recognition than physical combat, and evidence of a healed braincase injury in a specimen of Moschognathus whaitsi, interpreted as likely head-butting related injury resulting from play-fighting of juveniles.[115]
- Description of the cranial morphology of Jonkeria truculenta is published by Jirah, Rubidge & Abdala (2024), who also revise the family Titanosuchidae and interpret is as including two valid species (Jonkeria truculenta and Titanosuchus ferox).[116]
- Evidence of significant shape differences between juvenile and adult skulls of Diictodon feliceps, likely caused by the development of the musculature of the jaw related to a dietary shift later in ontogeny, is published by Rabe et al. (2024).[117]
- Taxonomic revision of the genus Endothiodon is published by Maharaj et al. (2024).[118]
- Shi & Liu (2024) describe new specimens of Turfanodon bogdaensis from the Permian Guodikeng Formation (Turpan, Xinjiang, China), providing new information on the skeletal anatomy of this species.[119]
- Description of the skull anatomy and a study on the affinities of Gordonia is published by George et al. (2024).[120]
- Pinto et al. (2024) tested for sexual dimorphism in Placerias, finding statistical evidence for two morphs of the size and length of the caniniform process but in no other studied elements, and suggest this is a secondary sexual trait.[121]
- Sidor & Mann (2024) describe an articulated sternum and interclavicle of a specimen of Aelurognathus tigriceps from the upper Madumabisa Mudstone Formation (Zambia), providing new information on the anatomy of the sternum in gorgonopsians.[122]
- Brant & Sidor (2024) describe a premaxilla of a member of the genus Inostrancevia from the Permian Usili Formation (Tanzania), representing the oldest record of the genus from the Southern Hemisphere reported to date.[123]
- Benoit et al. (2024) reevaluate the provenance of three gorgonopsian specimens from purported Lower Triassic strata in the Karoo Basin (South Africa), and interpret the studied fossils as expanding the range of the genus Cyonosaurus higher up in the extinction zone, but don't confirm the survival of gorgonopsians past the Permian–Triassic extinction event.[124]
- A study on the phylogeny of the Eutheriodontia and on the character evolution within the group is published by Pusch, Kammerer & Fröbisch (2024), who recover therocephalians as paraphyletic with regards to cynodonts.[125]
- A study on dental complexity in gomphodont cynodonts through time, indicating that the peak in postcanine complexity was reached early in the gomphodont evolution, is published by Hendrickx et al. (2024).[126]
- Roese-Miron et al. (2024) report the discovery of a specimen of Siriusgnathus niemeyerorum from Upper Triassic strata from the Várzea do Agudo site (Candelária Sequence of the Santa Maria Supersequence, Brazil), found above the layers yielding Exaeretodon riograndensis, and evaluate the implications of this finding for the biostratigraphy of the sites of the Candelária Sequence.[127]
- Kaiuca et al. (2024) provide new body mass estimates for multiple cynodont taxa, and report that rates of body size evolution were lower in prozostrodontians ancestral to the first Mammaliaformes than in other lineages.[128]
- A study on nasal cavities of Thrinaxodon, Chiniquodon, Prozostrodon, Riograndia and Brasilodon is published by Fonseca et al. (2024), who find no evidence of the presence of ossified turbinals in the nasal cavities of the studied cynodonts, but report evidence of increase in the anatomical complexity of the structures anchoring the cartilages in the nasal region in cynodont lineages closer to mammaliaforms.[129]
- Description of the anatomy of the maxillary canal of Riograndia guaibensis is published by Fonseca et al. (2024), who report evidence of the presence of pneumatization in the anterior region of the skull.[130]
- Szczygielski et al. (2024) redescribe Saurodesmus robertsoni, interpreting it as a valid cynodont taxon, possibly belonging to the family Tritylodontidae.[131]
- Hurtado, Harris & Milner (2024) describe possible eucynodont tracks from the Lower Jurassic Moenave Formation (Utah, United States), probably made in fine-grained sand on a flat lake shore (thus representing rare finding of early Mesozoic synapsid tracks outside eolian settings), and expanding known diversity of Early Jurassic animals from the Whitmore Point Member of the Moenave Formation.[132]
- New information on the morphology of the inner ear and stapes of Morganucodon is presented by Hoffmann et al. (2024).[133]
- Martin et al. (2024) describe new molars of Storchodon cingulatus from the Kimmeridgian Süntel Formation (Germany), and interpret the studied fossils as confirming the morganucodontan affinities of S. cingulatus, as well as confirming it as one of the largest morganucodontans.[134]
- Averianov & Voyta (2024) reinterpret fossil material of a putative Triassic stem mammal Tikitherium copei as a tooth of a Neogene shrew.[135]
- Panciroli et al. (2024) describe new juvenile and adult specimens of Krusatodon kirtlingtonensis from the Kilmaluag Formation (United Kingdom), and interpret the studied fossils as indicating that K. kirtlingtonensis had longer development and lifespan than extant mammals of comparable adult body mass.[136]
- A study on synapsid species richness and distribution throughout the Mesozoic is published by Brocklehurst (2024), who finds evidence of two phases of decline of non-mammalian synapsids – a restriction of their geographic range between the Triassic and Middle Jurassic, and a decline in species richness during the Early Cretaceous.[137]
Mammals
[edit]Other animals
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Zhang & Wang in Zhang et al. |
||||||
Gen. et sp. nov |
Valid |
Han, Guo, Wang and Qiang in Wang et al. |
A member of Saccorhytida. The type species is B. spinosa. |
|||||
Gen. et sp. nov |
Valid |
Malinky & Geyer |
Cambrian |
A hyolith. Genus includes new species B. greavesi. |
||||
Sp. nov |
Valid |
Jeon & Kershaw in Jeon et al. |
Ordovician (Hirnantian) |
Shiqian Formation |
A member of Stromatoporoidea. |
|||
Sp. nov |
Vinn et al. |
Ordovician (Hirnantian) |
A member of Cornulitida. |
|||||
Sp. nov |
Vinn et al. |
Ordovician (Hirnantian) |
A member of Cornulitida. |
|||||
Sp. nov |
Fang, Poinar & Luo in Fang et al. |
Cretaceous |
Burmese amber |
A nematode belonging to the family Mermithidae. |
||||
Sp. nov |
Valid |
Jeon in Jeon et al. |
Ordovician (Hirnantian) |
Shiqian Formation |
A member of Stromatoporoidea. |
|||
Sp. nov |
Valid |
Jeon in Jeon et al. |
Ordovician (Hirnantian) |
Shiqian Formation |
A member of Stromatoporoidea. |
|||
Gen. et sp. nov |
Valid |
Aria & Caron |
Cambrian (Wuliuan) |
A luolishaniid lobopodian. The type species is E. synnaustrus. |
||||
Sp. nov |
Valid |
Luzhnaya |
Cambrian |
A problematic microfossil, possibly a sponge. |
||||
Gen. et sp. nov |
Valid |
Davydov et al. |
Carboniferous (Gzhelian) |
Kosherovo Formation |
A calcareous sponge. The type species is G. cornigera. Published online in 2024, but the issue date is listed as December 2023. |
|||
Gen. et sp. nov |
Valid |
Wang et al. |
Ediacaran |
A sponge related to the Hexactinellida. The type species is H. cantori. |
||||
Gen. et sp. nov |
Valid |
Malinky & Geyer |
Cambrian |
Brigus Formation |
A hyolith. Genus includes new species L. florencei. |
|||
Gen. et sp. nov |
Zhao et al. |
Ediacaran |
Dengying Formation |
A possible member of Trilobozoa. The type species is L. tribrachialis. |
||||
Sp. nov |
Vinn et al. |
Middle Jurassic (Callovian) |
A spirorbine polychaete. |
|||||
Gen. et sp. nov |
Valid |
Lerosey-Aubril & Ortega-Hernández |
Cambrian (Drumian) |
A soft-bodied stem-vertebrate. The type species is N. rhynchocephalus. |
||||
Sp. nov |
Valid |
Malysheva |
Permian |
A sponge. |
||||
Gen. et sp. nov |
Valid |
Vinn, Wilson & Toom |
Ordovician (Hirnantian) |
Ärina Formation |
A member of Cornulitida. The type species is P. fragilis. |
|||
Gen. et sp. nov |
Valid |
Malinky & Geyer |
Cambrian |
Brigus Formation |
A hyolith. Genus includes new species P. crispenae. |
|||
Sp. nov |
Valid |
Nanglu & Ortega-Hernández |
Ordovician (Tremadocian) |
|||||
Sp. nov |
Valid |
Kočí et al. |
Early Jurassic (Pliensbachian) |
A polychaete belonging to the family Serpulidae. |
||||
Sp. nov |
Valid |
Pervushov |
Late Cretaceous (Maastrichtian) |
A hexactinellid sponge belonging to the family Ventriculitidae. |
||||
Sororistirps antetubiforme[155] |
Sp. nov |
Valid |
Pervushov |
Late Cretaceous (Santonian) |
Kazakhstan |
A hexactinellid sponge belonging to the family Ventriculitidae. |
||
Sororistirps postradiatum[155] |
Sp. nov |
Valid |
Pervushov |
Late Cretaceous (Santonian) |
A hexactinellid sponge belonging to the family Ventriculitidae. |
|||
Sp. nov |
Vinn et al. |
Middle Jurassic (Callovian) |
Possibly a species of Spirorbis. |
|||||
Gen. et sp. nov |
Valid |
Tonarová, Suttner, & Hints in Tonarová et al. |
Ordovician (Katian) |
A polychaete belonging to the family Ramphoprionidae. The type species is S. khannai. |
||||
Gen. et sp. nov |
Park et al. |
Cambrian |
Sirius Passet Lagerstätte |
A member of the stem group of Chaetognatha. The type species is T. koprii. |
||||
Gen. et sp. nov |
Valid |
Malinky & Geyer |
Cambrian |
Brigus Formation |
A hyolith. Genus includes new species T. chaddockae. |
|||
Sp. nov |
Valid |
Botha & García-Bellido |
Ediacaran |
Rawnsley Quartzite |
||||
Sp. nov |
Poinar |
Eocene |
Baltic amber |
Europe (Baltic Sea region) |
A nematode. |
|||
Sp. nov |
Sun et al. |
Douposi Formation |
Research
[edit]- Morais et al. (2024) report the discovery of approximately 571-million-years-old microfossils from the Bocaina Formation (Brazil), sharing anatomical similarities with sections of cloudinids, protoconodonts, anabaritids and hyolithids, and interpreted as likely remains of early animals.[161]
- Delahooke et al. (2024) study frondose specimens from Ediacaran strata in Newfoundland (Canada) found forming closely spaced, linear arrangements, and interpret them as likely formed by runner-like stolons, providing possible evidence of a previously unknown reproductive strategy of rangeomorphs.[162]
- Cao, Meng & Cai (2024) use electrochemical methods to simulate the process of tube generation of Cloudina under the same phosphorus content as modern seawater.[163]
- Wang et al. (2024) describe fossil material of two distinct types of archaeocyaths from the Cambrian Shuijingtuo and Xiannüdong formations (China), including fossils with complicated interior network of canals which might be remains of a water filtration mechanism more complex and efficient than the ones seen in sponges.[164]
- Pruss et al. (2024) describe fossil material of Archaeocyathus from the Cambrian Mule Spring Limestone (Nevada) and Carrara Formation (California, United States), representing some of the latest record of archaeocyaths and providing evidence of local survival of members of the group after the disappearance of diverse archaeocyath reefs in western Laurentia, into the later Cambrian Age 4; the authors interpret their findings as an example of the dead clade walking phenomenon.[165]
- Review of events of decline in the evolutionary history of stromatoporoids is published by Kershaw & Jeon (2024).[166]
- Botha et al. (2024) compare the morphology of Tribrachidium heraldicum and T. gehlingi, confirming that the two species were distinct.[167]
- Zhao et al. (2024) redescribe Calathites spinalis, and interpret it as a stem-ctenophore belonging to the family Dinomischidae.[168]
- Turk et al. (2024) redescribe the type material of Archaeichnium haughtoni, and interpret it as one of the earliest examples of marine worm burrow linings in the fossil record reported to date.[169]
- A specimen of Cricocosmia jinningensis preserved in the act of moulting is described from the Cambrian Chengjiang Lagerstätte (China) by Yu, Wang & Han (2024), who present a reconstruction of the moulting process of C. jinningensis.[170]
- Howard et al. (2024) redescribe "Protoscolex" latus and transfer this species to the genus Radnorscolex.[171]
- Chen et al. (2024) describe new fossil material of Microdictyon from the Cambrian Qiongzhusi Formation (China), providing new information on the molting process of lobopodians, and evidence of similarities of the sclerites of Microdictyon and extant armored tardigrades.[172]
- A body fossil resembling tentacles of extant trypanorhynch tapeworms is described from the Cretaceous amber from Myanmar by Luo et al. (2024).[173]
- Yang et al. (2024) describe new fossil material of Gaoloufangchaeta bifurcus from the Cambrian Wulongqing Formation (China), and interpret G. bifurcus as the earliest known errantian annelid.[174]
- Tubular fossils which might belong to early sabellids are described from the Upper Permian deposits in southern China by Słowiński, Clapham & Zatoń (2024), potentially expanding known range of sabellids during the late Paleozoic.[175]
- Jamison-Todd et al. (2024) describe boring produced by members of the genus Osedax in marine reptile bones from the Cenomanian Lower Chalk (United Kingdom), Campanian Marlbrook Marl and Mooreville Chalk (Arkansas and Alabama, United States) and Maastrichtian Mons Basin (Belgium), providing evidence of the presence of Osedax on both sides of the northern Atlantic Ocean in the Cretaceous, as well as evidence of the presence of different morphotypes of borings which were possibly produced by different species.[176]
- A study on the taxonomic and morphological diversity of Cambrian hyoliths, providing evidence of increase in diversity in the early Cambrian followed by decline in the Miaolingian, is published by Liu et al. (2024).[177]
- Mussini et al. (2024) report evidence for the presence of a gut canal and a dorsal nerve chord in Pikaia, and recover vetulicolians, Yunnanozoon and Pikaia as early-diverging stem chordates.[178]
Other organisms
[edit]New taxa
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
De Backer et al. |
Devonian |
Sweetland Creek Shale |
A chitinozoan. |
||||
Sp. nov |
Valid |
Camina et al. |
Copo Formation |
A chitinozoan. |
||||
Colum tekini[181] | sp. nov | Valid | Sashida & Ito in Sashida et al. | Upper Triassic (lower Norian) | Thailand | A pseudodictyomitrid radiolarian. Published online in 2023, but the issue date is listed as January 2024. | ||
Sp. nov |
Valid |
Denezine et al. |
Ediacaran |
Sete Lagoas Formation |
An organic-walled microfossil. |
|||
Sp. nov |
Camina et al. |
Devonian (Givetian) |
Los Monos Formation |
A chitinozoan. |
||||
Nom. et sp. nov |
Shang & Liu |
Ediacaran |
Doushantuo Formation |
An acritarch; a replacement name for Membranosphaera Liu & Moczydłowska (2019). Genus includes the type species M. formosa Liu & Moczydłowska (2019), as well as a new species M. copia. |
||||
Gen. et sp. nov |
Valid |
Granier |
Early Cretaceous (Berriasian to Valanginian) |
An acritarch. The type species is O. tethysianus. |
||||
Gen. et sp. nov |
Dai et al. |
Ediacaran |
A tubular organism of uncertain affinities. The type species is P. spiniferum. |
|||||
Sp. nov |
Camina et al. |
Devonian (Givetian) |
A chitinozoan. |
|||||
Gen. et sp. nov |
Dai & Hua in Dai et al. |
Ediacaran |
Dengying Formation |
A tubular organism of uncertain affinities. The type species is S. inornatus. |
||||
Nom. nov |
Shang & Liu |
Ediacaran |
Doushantuo Formation |
An acritarch; a replacement name for Verrucosphaera Liu & Moczydłowska (2019). |
||||
Gen. et sp. nov |
Valid |
Dernov in Dernov & Poletaev |
Carboniferous (Bashkirian) |
Dyakove Group |
An organism of uncertain affinities, with similarities to Escumasia, Caledonicratis and the hydrozoan Drevotella proteana. The type species is T. mavka. |
Research
[edit]- Kanaparthi et al. (2024) compare Archean microfossils from the Pilbara iron formation (Australia) and Barberton Greenstone Belt (South Africa) with extant microbes grown under conditions similar to possible environmental conditions of Archean Earth, and propose that the studied Archean microfossils were liposome-like protocells that had mechanisms for energy conservation, but not for regulating cell morphology and replication.[188]
- Demoulin et al. (2024) interpret Polysphaeroides filiformis from the Proterozoic Mbuji-Mayi Supergroup (Democratic Republic of the Congo) as a photosynthetic cyanobacterium representing the oldest unambiguous complex fossil member of Stigonemataceae known to date.[189]
- Evidence of preservation of thylakoid membranes within 1.78- to 1.73-billion-year-old fossils of Navifusa majensis from the McDermott Formation (Tawallah Group; Australia) and in 1.01- to 0.9-billion-year-old specimens from the Grassy Bay Formation (Shaler Supergroup; Canada) is reported by Demoulin et al. (2024).[190]
- A study comparing the preservation of fossils of cyanobacterial assemblages from the Ediacaran Gaojiashan biota and from the Cambrian Kuanchuanpu biota (China) is published by Min et al. (2024), who interpret the differences of preservation modes of the studied fossils as resulting from changes of atmospheric CO2 levels, which may have risen to approximately ten times present atmospheric level during the Ediacaran–Cambrian transition, and from related changes in marine chemical conditions.[191]
- McMahon et al. (2024) describe fossil material of a colony-forming entophysalid cyanobacterium from the Devonian Rhynie chert (Scotland, United Kingdom) with similarities to extant Entophysalis and mostly Proterozoic Eoentophysalis, and interpret this finding as suggestive of persistence of a single lineage with a broad environmental tolerance across 2 billion years.[192]
- Miao et al. (2024) describe 1.63-billion-year-old fossils of Qingshania magnifica from the Chuanlinggou Formation (China), and interpret the studied fossils as indicating that simple multicellularity evolved early in eukaryote history.[193]
- A study on the depositional setting of the strata of the Diabaig and Loch na Dal formations (Scotland, United Kingdom) preserving approximately 1-billion-year-old eukaryotic microfossils is published by Nielson, Stüeken & Prave (2024), who interpret their findings as indicating that early eukaryotes from the studied formations lived in estuaries rather than lakes, and were likely exposed to frequently changing water conditions.[194]
- A study on the evolutionary history of Arcellinida, as indicated by molecular data and fossil record, is published by Porfirio-Sousa et al. (2024), who determine that nodes leading to extant microbial eukaryote lineages originated in the latest Mesoproterozoic and Neoproterozoic, but the divergence of modern subclades of Arcellinida postdates the Silurian.[195]
- A study on the impact of the climatic and environmental changes across the Cenozoic on the distribution and diversity of planktonic marine foraminifera is published by Swain et al. (2024).[196]
- Surprenant & Droser (2024) compile a database of all occurrences of non-biomineral Ediacaran tubular organisms, and report evidence of previously unrecognized morphological diversity of the studied organisms.[197]
- Sun et al. (2024) provide new information on the developmental biology of Spiralicellula, and reject the interpretation of Spiralicellula and other components of the early Ediacaran Weng'an biota (Doushantuo Formation, China) as members of the animal crown group.[198]
History of life in general
[edit]- Moody et al. (2024) interpret the last universal common ancestor as a prokaryote-grade anaerobic acetogen that lived approximately 4.2 billion years ago, had an early immune system and was a part of an established ecological system.[199]
- Evidence of impact of ocean oxygenation events from Cryogenian to Cambrian on early evolution of animals is presented by Kaiho et al. (2024).[200]
- Crockett et al. (2024) argue that environmental changes at the time of the Snowball Earth generated selective pressures for multicellular morphologies that, combined with constraints caused by different biological organization, gave multicellular eukaryotes an evolutionary advantage not shared by bacteria.[201]
- Evidence indicating that Ediacaran and Cambrian animal radiations were related to oxygenation events that were linked to major sea level cycles is presented by Bowyer, Wood & Yilales (2024).[202]
- Gutarra et al. (2024) find that Ediacaran marine animal communities from the Mistaken Point Formation (Newfoundland, Canada) were capable of strongly mixing the surrounding water, and might have contributed to the ventilation of the oceans.[203]
- Ediacaran shallow-marine macrofossils from the Llangynog Inlier (Wales, United Kingdom) are determined to be approximately 564.09 million years old by Clarke et al. (2024).[204]
- New silicified fossil assemblage is described from the Ediacaran Dengying Formation (Shaanxi, China) by Dai et al. (2024), who interpret fossil material of Cloudina from this assemblage as indicating that Cloudina had a worldwide distribution in different paleoecologies and biofacies.[205]
- Evidence indicative of existence of long-term factors driving changes of diversity of skeletonized marine invertebrates throughout the Phanerozoic is presented by Wilson, Reitan & Liow (2024).[206]
- Cui et al. (2024) describe approximately 535-million-years-old microbial fossils from the Yuhucun Formation (China), interpreted as comparable to modern cyanobacteria, microalgae and fungi (including mold- and yeast-like morphotypes), and interpret the studied microorganisms as building symbiotic mats composed of decomposers and producers.[207]
- Evidence from the strata of the Dengying, Yanjiahe and Shuijingtuo formations (China), interpreted as indicative of the existence of a relationship between variable oceanic oxygenation, nitrogen supply and the evolution of early Cambrian life, is presented by Wei et al. (2024).[208]
- Slater (2024) describes a diverse assemblage of arthropod and molluscan microfossil from the Cambrian Stage 3 Mickwitzia Sandstone (Sweden), providing evidence of diversification of molluscan radulae which happened by the early Cambrian.[209]
- Evidence indicating that the Emu Bay Shale biota lived in a fan delta complex within a tectonically active, nearshore basin is presented by Gaines et al. (2024).[210]
- Evidence indicating that pulse of supracrustal deformation along the edge of west Gondwana caused a series of environmental changes that resulted in the Cambrian Stage 4 Sinsk event (the first major extinction of the Phanerozoic) is presented by Myrow et al. (2024).[211]
- Evidence indicating that patterns of extinctions of marine invertebrates over the past 485 million years were affected by physiological traits of invertebrates and by climate changes is presented by Malanoski et al. (2024).[212]
- Saleh et al. (2024) report the discovery of a new Early Ordovician Lagerstätte from Montagne Noire (France), preserving fossils of a diverse polar assemblage of both biomineralized and soft-bodied organisms (the Cabrières Biota).[213]
- The Devonian vertebrate assemblage from the Cloghnan Shale at Jemalong (New South Wales, Australia), including fossil material of Metaxygnathus, is interpreted as more likely Givetian–Frasnian than Famennian in age by Young (2024).[214]
- Faure-Brac et al. (2024) study the size of the primary vascular canals in early amniotes and non-amniote tetrapods, interpreted as a proxy for the size of red blood cells and for thermophysiology of the studied taxa, and argue that amniotes were ancestrally ectotherms, with different amniote group evolving endothermy independently.[215]
- Evidence from strata from the Permian–Triassic transition from southwest China, interpreted as indicative of temporal decoupling of the terrestrial and marine extinctions in Permian tropics during the Permian–Triassic extinction event and of a protracted terrestrial extinction spanning approximately 1 million years, is presented by Wu et al. (2024).[216]
- Evidence interpreted as indicative of two-stage pattern of the end-Permian extinction of the deep water organisms from the Dongpan Section (Guangxi, China), likely related to the upward and downward expansion of an oxygen minimum zone in the studied area, is presented by He et al. (2024).[217]
- A study on the extinction selectivity of marine animals during the Permian–Triassic extinction event is published by Song et al. (2024), who find that animal groups with hemoglobin and hemocyanin were less affected by the extinction than animals with hemerythrin or relying on diffusion of oxygen.[218]
- Liu et al. (2024) study the extinction selectivity of six marine animal groups during the Permian–Triassic extinction event, finding evidence of selective loss of complex and ornamented forms among ammonites, brachiopods and ostracods, but not bivalves, gastropods and conodonts.[219]
- Zhou et al. (2024) report the discovery of a new Early Triassic fossil assemblage dominated by ammonites and arthropods (the Wangmo biota) from the Luolou Formation (China), interpreted as evidence of the presence of a complex marine ecosystem that was rebuilt after the Permian–Triassic extinction event.[220]
- A study on the fossil record of Early Triassic conodonts and palynomorphs from the Vikinghøgda Formation (Svalbard, Norway), providing evidence of a shift from lycophyte-dominated to a gymnosperm-dominated vegetation related to the onset of a cooling episode, as well evidence indicating that temperature wasn't the main regulator for the distribution of segminate conodonts in the Early Triassic, is published by Leu et al. (2024).[221]
- Revision of the fossil record of the Triassic tetrapods from Russia is published by Shishkin et al. (2024).[222]
- Klein et al. (2024) report the discovery of a new locality in the Holbrook Member of the Moenkopi Formation (Anisian; Arizona, United States), likely representing the most extensive Middle Triassic tetrapod tracksite in North America reported to date.[223]
- Simms & Drost (2024) interpret Triassic caves within Carboniferous limestone outcrops in south-west Britain as Carnian in age, and consider terrestrial vertebrate fossils preserved in those caves to be Carnian or at least significantly pre-Rhaetian in age.[224]
- Campo et al. (2024) describe fossil material of Carnian tetrapods from the Faixa Nova-Cerrito I site, and evaluate its implications for the knowledge of the biostratigraphy of the Brazilian Upper Triassic record.[225]
- A study on the femoral histology of amniotes from the Triassic Ischigualasto Formation (Argentina) is published by Curry Rogers et al. (2024), who find that early dinosaurs known from this formation grew at least as quickly as sauropodomorph and theropod dinosaurs from the later Mesozoic, and that their elevated growth rates did not set them apart from other amniotes living at the same time.[226]
- Taphonomic revision of Jurassic marine reptile fossils from the Rosso Ammonitico Veronese (Italy) is published by Serafini et al. (2024), who find similarities between the studied fossil material and modern whale falls in pelagic-bathyal zones, and interpret those similarities as consistent with a bathyal, deep-water interpretation of the Rosso Ammonitico Veronese depositional setting.[227]
- A study on patterns of diversity changes of Late Jurassic tetrapods from the Morrison Formation through time and space is published by Maidment (2024).[228]
- Aouraghe et al. (2024) report the discovery of a new fossiliferous locality from the Tithonian–Berriasian interval of the Anoual Syncline (Morocco), preserving remains of plants and aquatic reptiles, and interpret the taxonomic composition of the studied assemblage as similar to the composition of contemporaneous Laurasian assemblages, potentially indicating that Laurasian and Gondwanan biotas diverged after the Jurassic-Cretaceous transition.[229]
- Blake et al. (2024) describe assemblages of vertebrate remains (dominated by sharks, bony fishes and crocodyliforms) from two localities from the London–Brabant Massif (Lower Greensand; United Kingdom), including the youngest occurrences of Vectiselachos gosslingi and V. ornatus reported to date, as well as including remains of at least five cartilaginous fish taxa interpreted as likely reworked from the underlying Jurassic or Wealden strata.[230]
- Evidence from calcareous nannofossils and small foraminifera from the Transylvanian Basin (Romania), interpreted as indicative of the appearance of a diverse continental vertebrate faunal assemblage on Hațeg Island by the second half of the late Campanian, presence of kogaionid multituberculates in the earliest known Hațeg faunas, and post-Campanian arrivial of hadrosauroids and titanosaur sauropods on the island, is presented by Bălc et al. (2024).[231]
- A study on the body size evolution of Mesozoic dinosaurs (including birds) and mammaliaforms is published by Wilson et al. (2024), who find no evidence that Bergmann's rule applied to the studied taxa.[232]
- Sarr et al. (2024) describe Maastrichtian micro- and macrofossils from a new locality from the Cap de Naze Formation, including fossil material of the first Cretaceous dyrosaurid from Senegal.[233]
- Boles et al. (2024) describe a new assemblage of vertebrate microfossils from the Cretaceous-Paleogene transition from the Hornerstown Formation (New Jersey, United States), providing evidence of slow recovery of elasmobranchs and ray-finned fish after the Cretaceous–Paleogene extinction event.[234]
- Fossil material of a reef biota that survived the Cretaceous–Paleogene extinction event, including scleractinian corals and domical and bulbous growth forms which might be fossils of calcified sponges, is described from the Maastrichtian and Paleocene strata from the Adriatic islands Brač and Hvar (Croatia) by Martinuš et al. (2024).[235]
- A study on changes of the diversity of ostracods from the Indo-Australian Archipelago region throughout the Cenozoic, aiming to determine factors responsible for recorded changes, is published by Tian et al. (2024), who argue that the studied region became the richest marine biodiversity hotspot mostly as a result of immunity to major extinction events during the Cenozoic, shift towards colder climate and the increase in habitat size (shelf area).[236]
- Brandoni et al. (2024) describe new vertebrate remains from the Miocene Ituzaingó Formation (Entre Ríos Province, Argentina), including the oldest record of the genus Leptodactylus and remains of a member of the genus Chelonoidis representing the first record of a tortoise from the late Miocene of the Entre Ríos Province.[237]
- New Miocene and Pleistocene vertebrate assemblages are described from the Sin Charoen sandpit (Nakhon Ratchasima province, Thailand) by Naksri et al. (2024), who intepret the Pleistocene assemblage as having strong faunal relationships with the Early-Middle Pleistocene faunas of Java (Indonesia).[238]
- Tattersfield et al. (2024) study the ecological associations of extant terrestrial gastropods from the Laetoli-Endulen area (Tanzania) and compare them with Pliocene gastropod assemblages from Laetoli, interpreting gastropods from the Lower Laetolil beds as indicative of semi-arid environment, those from the Upper Laetolil Beds as indicative of a mosaic of forest, woodland and bushland habitats, and gastropods from the Upper Ndolanya Beds as indicative of humid environment.[239]
- Antoine et al. (2024) report the discovery of fossil material from Kourou (French Guiana) providing evidence of the presence of diverse foraminifer, plant and animal communities near the equator in the 130,000-115,000 years ago time interval, as well as evidence of marine retreat and dryer conditions with a savanna-dominated landscape and episodes of fire during the onset of the Last Glacial Period.[240]
Other research
[edit]- A study on the Paleoproterozoic seawater biogeochemical conditions in the Francevillian sub-basin (Gabon) is published by Chi Fru et al. (2024), who report evidence of enrichment of seawater with phosphorus approximately 2,1 billion years ago, of comparable magnitude to Ediacaran seawater levels that supported the rise of the Ediacaran biota, and argue that this previously unrecognized seawater nutrient enrichment initiated the emergence of the Francevillian biota.[241]
- A study on the oxygenation of atmosphere and oceans and on marine productivity during the Neoproterozoic and Paleozoic is published by Stockey et al. (2024), who find no evidence of the wholesale oxygenation of Earth's oceans in the Neoproterozoic, but report evidence of a late Neoproterozoic increase in atmospheric oxygen and marine productivity, which likely increased oxygenation and food supply in shallow marine habitats at the time of the first radiation of major animal groups.[242]
- Huang et al. (2024) report evidence of a period in the Ediacaran when Earth's magnetic field was weakened, lasting 26 million years, overlapping temporally with atmospheric and oceanic oxygenation and potentially causing it and ultimately allowing diversification of the Ediacara Fauna.[243]
- 563-million-year-old horizontal markings with similarities to horizontal animal trace fossils, reported from the Itajaí Basin (Brazil), are interpreted as pseudofossils of tectonic origin by Becker Kerber et al. (2024), who propose a set of criteria which can be used to evaluate the identity of putative trace fossils.[244]
- Evidence of preservation of internal organs of soft-bodied organisms from the interbedded background mudstone beds of the Cambrian Yu'anshan Formation (China) as carbonaceous compressions is presented by Lei et al. (2024).[245]
- A study on silicified fossils from the Ordovician Edinburg Formation (Virginia, United States), aiming to determine sources of potential bias in fossil recovery, is published by Jacobs et al. (2024).[246]
- Purported Precambrian trace fossil Rugoinfractus ovruchensis is interpreted as mud cracks preserved in Devonian strata by Dernov (2024).[247]
- Evidence from the Bicheno-5 core in eastern Tasmania (Australia), interpreted as indicative of carbon cycle perturbations in the middle Permian, Carnian and Norian which triggered climatic and environmental changes within the Permian and Triassic Antarctic circle, is presented by Lestari et al. (2024).[248]
- Evidence interpreted as indicative of strong ozone depletion of the atmosphere at the onset of the Permian–Triassic extinction event is presented by Li et al. (2024).[249]
- A study on the lower Carnian basinal succession from the Polzberg Lagerstätte (Austria), providing evidence of deposition during the onset of the Carnian pluvial episode and of peculiar oceanographic conditions affecting the Reifling Basin at the time, is published by Lukeneder et al. (2024).[250]
- Rigo et al. (2024) report evidence of a previously unknown oceanic anoxic event of global extent that spanned the Norian-Rhaetian transition, likely related to extinctions and diversity losses among radiolarians, bivalves, ammonites, conodonts and marine vertebrates.[251]
- Evidence from mercury anomalies and fern spores from the Lower Saxony Basin (Germany), interpreted as indicative of persistence of volcanic-induced mercury pollution after the Triassic–Jurassic extinction event resulting in high abundances of malformed fern spores during the Triassic–Jurassic transition and during the Hettangian, is presented by Bos et al. (2024).[252]
- Evidence of global expansion of marine anoxia during the Toarcian Oceanic Anoxic Event, interpreted as indicating that anoxic waters covered ~6 to 8% of the global seafloor during the peak of the event, is presented by Remírez et al. (2024).[253]
- Song et al. (2024) determine the fossil strata of the Baiwan Formation (Henan, China) bearing fossils of the Jehol Biota to be approximately 123.6 million years old.[254]
- Woolley et al. (2024) attempt to quantify the amount of phylogenetic information available in the global fossil records of non-avian theropod dinosaurs, Mesozoic birds and squamates, and find that the studies of the phylogenic relationships of extinct animals are less affected by disproportionate representation of taxa from specific geologic units (especially Lagerstätten) in the evolutionary tree when the entire global fossil record of the studied groups, rather than just fossils from specific geologic units, preserves higher amount of phylogenetic information; the authors also find that Late Cretaceous squamate fossils from the Djadochta and Barun Goyot formations (Mongolia) provide a diproportionally large amount of phylogenetic information available in the squamate fossil record.[255]
- Almeida et al. (2024) provide new paleocurrent measurements for the Cretaceous and Paleogene in the eastern Amazonia region, and find persistent pattern of the river flow to the East in the Amazonas Basin from the Cretaceous to the present to be more likely than a reversal from the westward river flow to the eastward one.[256]
- Eberth (2024) revises the stratigraphic architecture of the Campanian Belly River Group (Alberta, Canada).[257]
- Evidence of a change in nitrogen isotope ratios of the organic matter bound in Campanian and Maastrichtian fish otoliths from the East Coast of the United States, interpreted as related to expansion of oxygen-deficient zones in the ocean during the Campanian-to-Maastrichtian climate cooling, is presented by Rao et al. (2024).[258]
- A study on the environmental conditions in the Late Cretaceous Western Interior Seaway is published by Wostbrock et al. (2024), who reconstruct δ18O seawater values consistent with open ocean during greenhouse climate for the Campanian and consistent with more evaporative conditions for the Maastrichtian.[259]
- Evidence indicating that, in spite of high global temperatures, oxygen availability in the waters of the tropical North Pacific actually rose during the Paleocene–Eocene Thermal Maximum, is presented by Moretti et al. (2024), who argue that this oxygen rise in the ocean might have prevented a mass extinction during the Paleocene–Eocene Thermal Maximum.[260]
- Evidence indicating that West Antarctica's Pacific margin was not covered by West Antarctic Ice Sheet during the Early Oligocene Glacial Maximum is presented by Klages et al. (2024).[261]
- A study on body mass, tooth wear and functional traits of teeth of mammalian herbivores from the Miocene to Pleistocene strata from the Falcón Basin (Venezuela), interpreted as indicative of a gradual decline in precipitation and tree cover in the environment of the studied mammals since the late Miocene, is published by Wilson et al. (2024), who argue that such data from mammal remains can be used of paleoenvironmental reconstructions at other South American localities.[262]
- Yu et al. (2024) provide new age estimates for the Aves Cave and Milo's Cave deposits (Bolt's Farm cave complex in the Cradle of Humankind, South Africa), and argue that there are no definitive examples of cave deposits in the Cradle of Humankind that are older than 3.2 million years.[263]
- Evidence of change in fire regime in northern Australia that happened at least 11,000 years ago, resulting in fires becoming more frequent but less intense and interpreted as resulting from Indigenous fire management, is presented by Bird et al. (2024).[264]
- Wiseman, Charles & Hutchinson (2024) compare multiple reconstructions of the musculature of Australopithecus afarensis, evaluating the capability of different models to maintain an upright, single-support limb posture, and find that models which are otherwise identical might be either able or unable support the body posed on an extended limb solely as a result of changing the input architectural parameters and including or excluding an elastic tendon.[265]
- Sullivan et al. (2024) argue that the process of generating rigorous reconstructions of extinct animals can lead to fresh inferences about the anatomy of the studied animals, and support their claims with examples from dinosaur paleontology.[266]
- Didier & Laurin (2024) propose a new model-based approach which can be used to study the diversification of fossil taxa, and apply it to the fossil record of ophiacodontids, edaphosaurids and sphenacodontids, finding evidence that the diversification of the studied synapsids slowed down around the Asselian/Sakmarian transition but no evidence of a late Sakmarian or Artinskian extinction event, and interpreting Olson's Extinction as a protracted decline in biodiversity over 20 million years rather than a rapid extinction event.[267]
- Cooper, Flannery-Sutherland & Silvestro (2024) present a deep learning approach which can be used to estimate biodiversity through time from the incomplete fossil record, and use this approach to estimate global biodiversity dynamics of marine animals from the Late Permian to Early Jurassic and proboscideans.[268]
- Hauffe, Cantalapiedra & Silvestro (2024) present a Bayesian model that can be used to determine diversification dynamics from fossil occurrence data and apply it to the fossil record of proboscideans.[269]
- Reumer (2024) hypothesizes that Beringer's Lying Stones represent the first recorded case of an intentional paleontological fraud in history, and might have been perpetrated by Johann Beringer himself.[270]
Paleoclimate
[edit]- A multibillion-year history of seawater δ18O, temperature, and marine and terrestrial clay abundance is reconstructed by Isson & Rauzi (2024), who report evidence interpreted as indicative of temperate Proterozoic climate, and evidence indicating that declines in clay authigenesis coincided with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants.[271]
- A study on Lower Triassic marine shales and cherts, providing evidence of enhanced reverse weathering which might have contributed to the persistence of elevated temperatures in the aftermath of the Permian–Triassic extinction event, is published by Rauzi et al. (2024).[272]
- Gurung et al. (2024) use a new vegetation and climate model to study links between plant geographical range, the long-term carbon cycle and climate, and find that reduced geographical range of plants in Pangaea resulted in increased atmospheric CO2 concentration during the Triassic and Jurassic periods, while the expande geographical range of plants after the breakup of Pangaea amplified global CO2 removal.[273]
- A study on the geochemistry of Jurassic deposits of the External Rif Chain (Morocco), providing evidence of climate changes in northwest Gondwana during the Jurassic period (from cool climate with low rainfall and productivity during the Early Jurassic, to moister, warmer climate during the Middle and Late Jurassic, subsequently returning to arid and cool climate during the Late Jurassic), is published by Kairouani et al. (2024).[274]
- Evidence indicating that small to large ice sheets were present in Antarctica throughout much of the Early Cretaceous, briefly melting in response to episodic volcanism, is presented by Nordt, Breecker & White (2024).[275]
- A study on calcite from Early Cretaceous belemnite rostra from the Mahajanga Basin (Madagascar), providing evidence of the Valanginian cooling event in the Southern Hemisphere, is published by Wang et al. (2024).[276]
- Clark et al. (2024) present a new reconstruction of global temperature changes over the past 4.5 million years, interpreted as consistent with changes in the carbon cycle.[277]
- Amarathunga et al. (2024) present evidence indicative of a humid period in North Africa lasting from 3.8 to 3.3 million years ago, possibly sustaining persistent green corridors that facilitated early hominin connectivity and migration.[278]
- An et al. (2024) present evidence indicating that growth of the Antarctic ice sheets from 2 to 1.25 million years ago preceded and likely induced expansion of ice sheets of the Northern Hemisphere after 1.25 million years ago.[279]
Deaths
[edit]- Estella Leopold, paleobotanist and conservation paleontologist passes on February 25, 2024 at 97. Leopold's work as a conservationist included taking legal action to help save the Florissant Fossil Beds in Colorado, and fighting pollution. She was the daughter of Aldo Leopold.[280]
References
[edit]- ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- ^ Hamad, M. M. (2024). "Geniculate coralline algae from the Pliocene Shagra formation at Wadi Abu Dabbab, Marsa, Alam area, Red Sea coastal plain, Egypt". Geopersia. doi:10.22059/geope.2024.366189.648732.
- ^ Krings, M. (2024). "Further observations on stalked microfossils from the Lower Devonian Rhynie cherts that resemble the algae Characiopsis (Eustigmatophyceae) and Characium (Chlorophyceae)". Review of Palaeobotany and Palynology. 324. 105081. Bibcode:2024RPaPa.32405081K. doi:10.1016/j.revpalbo.2024.105081.
- ^ Liu, J.; Li, M.; Tang, F.; Zhao, J.; Song, S.; Zhou, Y.; Song, X.; Ren, L. (2023). "New Benthic Fossils from the Late Ediacaran Strata of Southwestern China". Acta Geologica Sinica (English Edition). 98 (2): 311–323. doi:10.1111/1755-6724.15153.
- ^ Choi, S.-W.; Graf, L.; Choi, J. W.; Jo, J.; Boo, G. H.; Kawai, H.; Choi, C. G.; Xiao, S.; Knoll, A. H.; Andersen, R. A.; Yoon, H. S. (2024). "Ordovician origin and subsequent diversification of the brown algae". Current Biology. 34 (4): 740–754.e4. Bibcode:2024CBio...34E.740C. doi:10.1016/j.cub.2023.12.069. hdl:10919/117989. PMID 38262417.
- ^ Kiel, S.; Goedert, J. L.; Huynh, T. L.; Krings, M.; Parkinson, D.; Romero, R.; Looy, C. V. (2024). "Early Oligocene kelp holdfasts and stepwise evolution of the kelp ecosystem in the North Pacific". Proceedings of the National Academy of Sciences of the United States of America. 121 (4). e2317054121. Bibcode:2024PNAS..12117054K. doi:10.1073/pnas.2317054121. PMC 10823212. PMID 38227671.
- ^ Mahato, S.; Khan, M. A. (2024). "A new foliicolous fossil-species of Asterina Lév. (Asterinaceae; Asterinales) associated with Calophyllum L. from the Siwalik of Eastern Himalaya and its implications". Review of Palaeobotany and Palynology. 327. 105143. Bibcode:2024RPaPa.32705143M. doi:10.1016/j.revpalbo.2024.105143.
- ^ a b Guo, S.; Deng, X.; Ma, Z.; Mao, N.; Huang, W. (2024). "Two new species of suspected mushrooms of the suborder Marasmiineae from mid-Cretaceous Burmese amber (Basidiomycota, Agaricales)". Cretaceous Research. 164. 105968. doi:10.1016/j.cretres.2024.105968.
- ^ Kundu, S.; Khan, M. A. (2023). "Black mildew disease on the Siwalik (Miocene) monocot leaves of Western Himalaya, India caused by Meliolinites". Fungal Biology. 128 (1): 1626–1637. doi:10.1016/j.funbio.2023.12.006. PMID 38341268.
- ^ Wang, Z.-E.; Song, Z.-H.; Cao, R.; Li, H.-S.; Chen, G.-H.; Ding, S.-T.; Wu, J.-Y. (2024). "A new fossil species of Meliolinites Selkirk associated with Rhodoleia leaves from the Upper Pliocene of southwestern China". Mycologia. 116 (4): 498–508. doi:10.1080/00275514.2024.2348980. PMID 38848260.
- ^ Kundu, S.; Khan, M. A. (2024). "First report of fossil representative of Zygosporium Mont. with stacked chained vesicular conidiophores from India". Fungal Biology. 128 (3): 1735–1741. Bibcode:2024FunB..128.1735K. doi:10.1016/j.funbio.2024.03.005. PMID 38796257.
- ^ Mahato, S.; Bianchinotti, M. V.; Kundu, S.; Khan, M. A. (2024). "Zygosporium palaeogibbum sp. nov. (Xylariales, Ascomycota) associated with Cinnamomum Schaeff. (Lauraceae) leaves from the Siwalik (Middle Miocene) of eastern Himalaya". Mycological Progress. 23 (1). 27. Bibcode:2024MycPr..23...27M. doi:10.1007/s11557-024-01962-4.
- ^ Kundu, S.; Khan, M. A. (2024). "Fossils can reveal a long-vanished combination of character states: Evidence from a mysterious foliicolous anamorphic fungus from the Middle Siwalik (Late Miocene) of Himachal Pradesh, India". Mycologia: 1–9. doi:10.1080/00275514.2024.2367954. PMID 39024179.
- ^ Garcia Cabrera, N.; Krings, M. (2024). "Fungi colonizing bulbils of the charophyte green alga Palaeonitella cranii from the Lower Devonian Rhynie chert, Scotland". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 99–117. doi:10.1127/njgpa/2023/1172.
- ^ a b c Luo, Z.; Shi, G.; Lin, W.; Chen, J.; Liu, J.; Bai, H.; Liang, K.; Yao, L.; Huang, X.; Qie, W.; Wang, Y. (2024). "Upper Carboniferous Corals from the Junggar Basin, northern Xinjiang, NW China". Acta Palaeontologica Sinica. 63 (1): 66–93. doi:10.19800/j.cnki.aps.2023013.
- ^ Liu, M.-J.; Liu, Y.-H.; Zhang, Y.-N.; Shao, T.-Q.; Qin, J.-C. (2024). "The successive evolution of hexangulaconulariids and the growth pattern of carinachitiids revealed by new materials from the lower Cambrian of South China". Palaeoworld. doi:10.1016/j.palwor.2024.02.003.
- ^ El-Desouky, H. (2024). "Revisiting Late Pennsylvanian (Kasimovian) Corals of Egypt: New perspectives and contributions". Egyptian Journal of Geology. 68: 79–95. doi:10.21608/EGJG.2024.281602.1071.
- ^ Lathuilière, B.; Huang, D.; The Corallosphere Group (2024). "Deciphering the evolutionary history of early Mesozoic fossil corals". Acta Palaeontologica Polonica. 69 (2): 249–262. doi:10.4202/app.01136.2024.
- ^ Pisapia, C.; Vicens, G. M.; Benzoni, F.; Westphal, H. (2024). "Mediterranean imprint on coral diversity in the incipient Red Sea (Burdigalian, Saudi Arabia)". PALAIOS. 39 (7): 233–242. Bibcode:2024Palai..39..233P. doi:10.2110/palo.2023.025.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av Håkansson, E.; Gordon, D. P.; Taylor, P. D. (2024). Bryozoa from the Maastrichtian Korojon Formation, Western Australia. Fossils and Strata Series. Vol. 70. pp. 1–155. doi:10.18261/9788215072081-2024. ISBN 978-8-215-07207-4.
- ^ Taboada, C. A.; Pagani, M. A.; Cúneo, R. (2024). "Encrusting bryozoan attached to terrestrial plant leaves from brackish deposits of the Lefipán Formation (Patagonia, Argentina), close to the K/Pg boundary". Cretaceous Research. 105970. doi:10.1016/j.cretres.2024.105970.
- ^ Ernst, A.; Buttler, C. (2024). "Bryozoan fauna from the Ferques Formation (Upper Devonian, Frasnian) of France". Palaeobiodiversity and Palaeoenvironments. Bibcode:2024PdPe..tmp...29E. doi:10.1007/s12549-024-00614-5.
{{cite journal}}
: CS1 maint: bibcode (link) - ^ a b c Baranov, V. V.; Nikolaev, A. I. (2024). "New Taxa of Spiriferids (Brachiopoda) from the Lower Devonian Beds of Northeastern Asia". Paleontological Journal. 58 (1): 60–69. Bibcode:2024PalJ...58...60B. doi:10.1134/S0031030124010015.
- ^ Hints, L. (2024). "Taxonomy of the Sandbian (Upper Ordovician) brachiopod Dalmanella kegelensis Alichova, 1953 and the new genus Alichovella". Estonian Journal of Earth Sciences. 73 (1): 45–56. doi:10.3176/earth.2024.06.
- ^ a b c d Jin, J.; Rasmussen, C. M. Ø.; Sheehan, P. M.; Harper, D. A. T. (2024). "Late Ordovician and early Silurian virgianid and stricklandioid brachiopods from North Greenland: implications for a warm-water faunal province". Papers in Palaeontology. 10 (1). e1544. Bibcode:2024PPal...10E1544J. doi:10.1002/spp2.1544.
- ^ Gaudin, J. (2024). "Chenshichonetes nom. nov., a new replacement name for Robertsella Chen & Shi, 2003 (Brachiopoda, Rugosochonetidae)". Zootaxa. 5403 (2): 293–294. doi:10.11646/zootaxa.5403.2.8. PMID 38480440.
- ^ a b Benedetto, J. L.; Lavié, F. J.; Salas, M. J. (2024). "New Silurian craniopsids (Brachiopoda, Craniiformea) from the Precordillera basin of western Argentina and their associated faunas". Journal of South American Earth Sciences. 138. 104881. Bibcode:2024JSAES.13804881B. doi:10.1016/j.jsames.2024.104881.
- ^ a b c d e Gallagher, E. E.; Harper, D. A. T. (2024). "Silurian brachiopods from the Pentland Hills, Scotland". Monographs of the Palaeontographical Society. 177 (666): 1–69. doi:10.1080/02693445.2023.2307703.
- ^ a b Jin, J.; Harper, D. A. T. (2024). "An Edgewood-type Hirnantian fauna from the Mackenzie Mountains, northwestern margin of Laurentia". Journal of Paleontology. 98 (1): 13–39. Bibcode:2024JPal...98...13J. doi:10.1017/jpa.2023.87.
- ^ a b c d Baranov, V. V.; Kebria-Ee Zadeh, M.-R.; Blodgett, R. B. (2024). "Late Famennian rhynchonellides (Brachiopoda) of northeast Iran". Historical Biology: An International Journal of Paleobiology: 1–30. doi:10.1080/08912963.2024.2341857.
- ^ a b c Mergl, M. (2024). "Lingulates of the Monograptus belophorus Biozone (Motol Formation, Sheinwoodian, Wenlock) of the Barrandian area, Czech Republic: insight into remarkable lingulate brachiopod diversity in the Silurian". Bulletin of Geosciences. 99 (1): 1–42. doi:10.3140/bull.geosci.1897.
- ^ a b c Baranov, V. V.; Blodgett, R. B. (2023). "Some Early Pragian Brachiopods from Soda Creek Limestone of West-Central Alaska". Paleontological Journal. 57 (1 supplement): S45–S57. doi:10.1134/S0031030123700016.
- ^ Liu, C.-Y.; Qiao, L.; Liang, K.; Li, Y.; Qie, W.-K. (2024). "Middle Devonian brachiopods from Qujing of eastern Yunnan, China and their biostratigraphical and palaeoecological implications". Palaeoworld. doi:10.1016/j.palwor.2024.02.005.
- ^ Guo, Z.; Benton, M. J.; Stubbs, T. L.; Chen, Z.-Q. (2024). "Morphological innovation did not drive diversification in Mesozoic–Cenozoic brachiopods". Nature Ecology & Evolution: 1–11. doi:10.1038/s41559-024-02491-9. PMID 39054349.
- ^ Liang, Y.; Fu, R.; Hu, Y.; Liu, F.; Song, B.; Luo, M.; Ren, X.; Wang, J.; Zhang, C.; Fang, R.; Yang, X.; Holmer, L. E.; Zhang, Z. (2024). "Late Ordovician lingulid brachiopods from the Pingliang Formation (Shaanxi Province, North China): Morphological and ecological implications". Journal of Asian Earth Sciences. 263. 106036. Bibcode:2024JAESc.26306036L. doi:10.1016/j.jseaes.2024.106036.
- ^ Dattilo, B. F.; Freeman, R. L.; Hartshorn, K.; Peterman, D.; Morse, A.; Meyer, D. L.; Dougan, L. G.; Hagadorn, J. W. (2024). "Paradox lost: wide gape in the Ordovician brachiopod Rafinesquina explains how unattached filter-feeding strophomenoids thrived on muddy substrates". Palaeontology. 67 (2). e12697. Bibcode:2024Palgy..6712697D. doi:10.1111/pala.12697.
- ^ Shapiro, R. S. (2024). "Dimerelloid brachiopod Dzieduszyckia from Famennian hydrocarbon seep deposits of Slaven Chert, Nevada, USA, with insights into systematics and paleoecology of the Dimerelloidea". Acta Palaeontologica Polonica. 69 (1): 87–107. doi:10.4202/app.01059.2023.
- ^ Harper, E. M.; Peck, L. S. (2024). "The demise of large tropical brachiopods and the Mesozoic marine revolution". Royal Society Open Science. 11 (3). 231630. Bibcode:2024RSOS...1131630H. doi:10.1098/rsos.231630. PMC 10966397. PMID 38545611.
- ^ Liu, Q.; Paul, C. R. C.; Mao, Y.-Y.; Li, Y.; Fang, X.; Huang, D.-Y. (2024). "Cheirocystis liexiensis, a new rhombiferan blastozoan (Echinodermata) from Lower Ordovician of South China Block". Palaeoworld. doi:10.1016/j.palwor.2024.04.005.
- ^ Płachno, B. J.; Benyoucef, M.; Mekki, F.; Adaci, M.; Bouchemla, I.; Jain, S.; Krajewski, M.; Salamon, M. A. (2024). "Copernicrinus zamori gen. et sp. nov., the oldest thiolliericrinid crinoid (Crinoidea, Echinodermata) from the Bajocian strata of northwestern Algeria, Africa". Journal of Palaeogeography. 13 (2): 237–251. doi:10.1016/j.jop.2024.02.001.
- ^ Gale, A. S.; Jagt, J. W. M. (2024). "The aberrant crinoid Cyathidium (Echinodermata, Crinoidea, Cyrtocrinida) from lower Campanian phosphatic chalk in West Sussex (UK) and Picardie (France)". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2024.07.001.
- ^ Ausich, W. I.; Wilson, M. A.; Toom, U. (2024). "Early Silurian crinoid diversification on Baltica: Euspirocrinus varbolaensis sp. nov". Estonian Journal of Earth Sciences. 73 (1): 37–44. doi:10.3176/earth.2024.05.
- ^ a b Bohatý, J.; Ausich, W. I.; Becker, R. T. (2024). "Frasnian crinoid associations of the Prüm Syncline (Eifel, Rhenish Massif, Germany) – biostratigraphic framework and macrofossil assemblages". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. doi:10.1127/njgpa/2024/1200.
- ^ a b c d e Pauly, L.; Haude, R. (2024). "New sea urchins (Echinodermata: Echinoidea) from the Famennian of Velbert (W Germany): Evidence for echinoid faunal turnover in the Late Devonian". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-024-00612-7.
- ^ Roux, M.; Martinez-Soares, P.; Fornaciari, E.; Gatto, R.; Papazzoni, C. A.; Giusberti, L. (2024). "Eocene stalked crinoids in the genus Isselicrinus (Echinodermata, Crinoidea, Isocrinida) from northeastern Italy". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 153–171. doi:10.54103/2039-4942/20885.
- ^ Schlüter, N. (2024). "One steps out of line—A "modern" Micraster species (Echinoidea, Spatangoida) with some old-fashioned look, Micraster ernsti sp. nov. from the Campanian (Cretaceous)". Zootaxa. 5403 (1): 80–90. doi:10.11646/zootaxa.5403.1.5. PMID 38480453.
- ^ Thuy, B.; Numberger-Thuy, L. D.; Härer, J.; Kroh, A.; Winkler, V.; Schweigert, G. (2024). "Fossil evidence for the ancient link between clonal fragmentation, six-fold symmetry and an epizoic lifestyle in asterozoan echinoderms". Proceedings of the Royal Society B: Biological Sciences. 291 (2023). 20232832. doi:10.1098/rspb.2023.2832. PMC 11285804. PMID 38747704.
- ^ Blake, D. B.; Lefebvre, B. (2024). "Ordovician Petraster Billings, 1858 (Asteroidea: Echinodermata) and early asteroid skeletal differentiation". Comptes Rendus Palevol. 23 (17): 217–239. doi:10.5852/cr-palevol2024v23a17.
- ^ a b Rozhnov, S. V.; Anekeeva, G. A. (2024). "First Specimens of the Cornutan Stylophoran Phyllocystis (Echinodermata) in the Ordovician (Volkhov Regional Stage, Dapingian and Darriwilian) of Baltica and Special Aspects of Stylophoran Axial Symmetry". Paleontological Journal. 58 (2): 181–195. Bibcode:2024PalJ...58..181R. doi:10.1134/S0031030123600300.
- ^ Brower, J. C.; Brett, C. E.; Feldman, H. R. (2024). "A crinoid fauna and a new species of Pycnocrinus from the Martinsburg Formation (Upper Ordovician), lower Hudson Valley, New York". Journal of Paleontology: 1–18. doi:10.1017/jpa.2024.4.
- ^ Salamon, M. A.; Benyoucef, M.; Jain, S.; Benzaggagh, M.; Płachno, B. J.; Abdelhamid, M. A. M.; Ahmad, F.; Azar, D.; Bouchemla, I.; Brachaniec, T.; El Ouali, M.; El Qot, G.; Ferré, B.; Gorzelak, P.; Krajewski, M.; Klompmaker, A. A.; Mekki, F.; Paszcza, K.; Poatskievick-Pierezan, B.; Slami, R. (2024). "Jurassic and Cretaceous crinoids (Crinoidea, Echinodermata) from the southern Tethys margin (northern and eastern Africa, and southern Asia)". Palaeontographica Abteilung A. doi:10.1127/pala/2024/0148.
- ^ Wang, D.Z.; Nohejlová, M.; Sun, Z.X.; Zeng, H.; Lefebvre, B.; Yang, X.L.; Zhao, F.C. (2024). "First report of lepidocystid echinoderm in the Cambrian of North China: evolutionary and palaeobiogeographic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 644. 112194. Bibcode:2024PPP...64412194W. doi:10.1016/j.palaeo.2024.112194.
- ^ Rahman, I; Zamora, S (January 2, 2024). "Origin and Early Evolution of Echinoderms". Annual Review of Earth and Planetary Sciences. 52 (1): 295–320. Bibcode:2024AREPS..52..295R. doi:10.1146/annurev-earth-031621-113343. hdl:10141/623070.
- ^ Novack-Gottshall, P. M.; Purcell, J.; Sultan, A.; Ranjha, I.; Deline, B.; Sumrall, C. D. (2024). "Ecological novelty at the start of the Cambrian and Ordovician radiations of echinoderms". Palaeontology. 67 (1). e12688. Bibcode:2024Palgy..6712688N. doi:10.1111/pala.12688.
- ^ Bohatý, J.; Poschmann, M. J.; Müller, P.; Ausich, W. I. (2024). "Putting a crinoid on a stalk: new evidence on the Devonian diplobathrid camerate Monstrocrinus". Journal of Paleontology. 97 (6): 1233–1250. doi:10.1017/jpa.2023.84.
- ^ Limbeck, M. R.; Bauer, J. E.; Deline, B.; Sumrall, C. D. (2024). "Initial quantitative assessment of the enigmatic clade Paracrinoidea (Echinodermata)". Palaeontology. 67 (3). e12695. Bibcode:2024Palgy..6712695L. doi:10.1111/pala.12695.
- ^ García-Penas, Á.; Baumiller, T. K.; Aurell, M.; Zamora, S. (2024). "Intact stalked crinoids from the late Aptian of NE Spain offer insights into the Mesozoic Marine Revolution in the Tethys". Geology. 52 (8): 594–599. doi:10.1130/G52179.1.
- ^ Salamon, M. A.; Radwańska, U.; Paszcza, K.; Krajewski, M.; Brachaniec, T.; Niedźwiedzki, R.; Gorzelak, P. (2024). "The latest shallow-sea isocrinids from the Miocene of Paratethys and implications to the Mesozoic marine revolution". Scientific Reports. 14 (1). 17932. doi:10.1038/s41598-024-67687-2. PMID 39095508.
- ^ Gutiérrez-Marco, J. C.; Maletz, J. (2024). "Mass occurrence of planktic dendroid graptolite synrhabdosomes (Calyxdendrum) from the Early Ordovician Fezouata biota of Morocco". Geologica Acta. 22. doi:10.1344/GeologicaActa2024.22.4.
- ^ Yang, X.; Kimmig, J.; Cameron, C. B.; Nanglu, K.; Kimmig, S. R.; de Carle, D.; Zhang, C.; Yu, M.; Peng, S. (2024). "An early Cambrian pelago-benthic acorn worm and the origin of the hemichordate larva". Palaeontologia Electronica. 27 (1). 27.1.a17. doi:10.26879/1356.
- ^ a b Maletz, J. (2024). "The evolutionary origins of the Hemichordata (Enteropneusta & Pterobranchia) - A review based on fossil evidence and interpretations". Bulletin of Geosciences. 99 (2): 127–147. doi:10.3140/bull.geosci.1899.
- ^ a b Lerosey-Aubril, R.; Maletz, J.; Coleman, R.; Del Mouro, L.; Gaines, R. R.; Skabelund, J.; Ortega-Hernández, J. (2024). "Benthic pterobranchs from the Cambrian (Drumian) Marjum Konservat-Lagerstätte of Utah". Papers in Palaeontology. 10 (3). e1555. Bibcode:2024PPal...10E1555L. doi:10.1002/spp2.1555.
- ^ Shijia, G.; Tan, J.; Wang, W. (2024). "Locomotory and morphological evolution of the earliest Silurian graptolite Demirastrites selected by hydrodynamics". Palaeontology. 67 (3). e12716. Bibcode:2024Palgy..6712716S. doi:10.1111/pala.12716.
- ^ Karádi, V. (2024). "Towards a refined Norian (Upper Triassic) conodont biostratigraphy of the western Tethys: revision of the recurrent 'multidentata-issue'". Geological Magazine: 1–19. doi:10.1017/S0016756824000104.
- ^ a b Nazarova, V. M.; Soboleva, M. A. (2024). "Icriodus multidentatus sp. nov. and I. quartadecimensis sp. nov.—New Conodont Species from the Frasnian Stage of the Southern Timan". Paleontological Journal. 58 (3): 306–314. Bibcode:2024PalJ...58..306N. doi:10.1134/S0031030124700114.
- ^ a b c d Orchard, M. J.; Golding, M. L. (2024). "The Neogondolella constricta (Mosher and Clark, 1965) group in the Middle Triassic of North America: speciation and distribution". Journal of Paleontology. 97 (6): 1161–1191. doi:10.1017/jpa.2023.52.
- ^ Tagarieva, R. Ch. (2024). "Palmatolepis abramovae sp. nov.—A New Conodont Species from the Makarovo Regional Substage (Lower Famennian, Upper Devonian) of the Western Slope of the South Urals". Paleontological Journal. 58 (2): 196–203. Bibcode:2024PalJ...58..196T. doi:10.1134/S0031030123600324.
- ^ Shirley, B.; Leonhard, I.; Murdock, D. J. E.; Repetski, J.; Świś, P.; Bestmann, M.; Trimby, P.; Ohl, M.; Plümper, O.; King, H. E.; Jarochowska, E. (2024). "Increasing control over biomineralization in conodont evolution". Nature Communications. 15 (1). 5273. Bibcode:2024NatCo..15.5273S. doi:10.1038/s41467-024-49526-0. PMC 11190287. PMID 38902270.
- ^ Zhen, Y. Y. (2024). "Taxonomic revision of the genus Stiptognathus (Conodonta) from the Lower Ordovician of Australia and its biostratigraphical and palaeobiogeographical significance". Alcheringa: An Australasian Journal of Palaeontology. 48 (1): 79–93. Bibcode:2024Alch...48...79Z. doi:10.1080/03115518.2024.2306623.
- ^ Voldman, G. G.; Cisterna, G. A.; Sterren, A. F.; Ezpeleta, M.; Barrick, J. E. (2024). "First documentation of Late Paleozoic conodonts from Argentina: Biostratigraphic and paleoclimatic constraints for the Late Paleozoic Ice Age in SW Gondwana". Geology. 52 (8): 583–587. doi:10.1130/G52133.1.
- ^ Xue, C.; Yuan, D.; Chen, Y.; Stubbs, T. L.; Zhao, Y.; Zhang, Z. (2024). "Morphological innovation after mass extinction events in Permian and Early Triassic conodonts based on Polygnathacea". Palaeogeography, Palaeoclimatology, Palaeoecology. 642. 112149. Bibcode:2024PPP...64212149X. doi:10.1016/j.palaeo.2024.112149.
- ^ Yao, M.; Sun, Z.; Ji, C.; Liu, S.; Zhou, M.; Jiang, D. (2024). "Conodont-bearing bromalites from South China: Evidence for multiple predations on conodonts in the Early Triassic marine ecosystem". Palaeogeography, Palaeoclimatology, Palaeoecology. 651. 112377. doi:10.1016/j.palaeo.2024.112377.
- ^ Ye, S.-Y.; Wu, K.; Sun, Z.-Y.; Sander, P. M.; Samathi, A.; Sun, Y.-Y.; Ji, C.; Suteethorn, V.; Liu, J. (2024). "Conodonts suggest a late Spathian (late Early Triassic) age for Thaisaurus chonglakmanii (Reptilia: Ichthyosauromorpha) from Thailand". Palaeoworld. doi:10.1016/j.palwor.2024.07.004.
- ^ Golding, M. L.; Kılıç, A. M. (2024). "Reconstruction of the multielement apparatus of the conodont Gladigondolella tethydis (Huckriede) using multivariate statistical analysis; implications for taxonomy, stratigraphy, and evolution". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 1–18. doi:10.54103/2039-4942/19954.
- ^ MacDougall, M. J.; Jannel, A.; Henrici, A. C.; Berman, D. S.; Sumida, S. S.; Martens, T.; Fröbisch, N. B.; Fröbisch, J. (2024). "A new recumbirostran 'microsaur' from the lower Permian Bromacker locality, Thuringia, Germany, and its fossorial adaptations". Scientific Reports. 14 (1). 4200. Bibcode:2024NatSR..14.4200M. doi:10.1038/s41598-023-46581-3. PMC 10879142. PMID 38378723.
- ^ a b Ponstein, J.; MacDougall, M. J.; Fröbisch, J. (2024). "A comprehensive phylogeny and revised taxonomy of Diadectomorpha with a discussion on the origin of tetrapod herbivory". Royal Society Open Science. 11 (6). 231566. Bibcode:2024RSOS...1131566P. doi:10.1098/rsos.231566. PMC 11257076. PMID 39036512.
- ^ Uliakhin, A. V.; Golubev, V. K. (2024). "Ancient Species of the Genus Dvinosaurus (Temnospondyli, Dvinosauria) from the Permian Sundyr Tetrapod Assemblage of Eastern Europe". Paleontological Journal. 58 (2): 204–225. Bibcode:2024PalJ...58..204U. doi:10.1134/S0031030123600336.
- ^ Marsicano, C. A.; Pardo, J. D.; Smith, R. M. H.; Mancuso, A. C.; Gaetano, L. C.; Mocke, H. (2024). "Giant stem tetrapod was apex predator in Gondwanan late Palaeozoic ice age". Nature. 631 (8021): 577–582. Bibcode:2024Natur.631..577M. doi:10.1038/s41586-024-07572-0. PMID 38961286.
- ^ So, C.; Pardo, J. D.; Mann, A. (2024). "A new amphibamiform from the Early Permian of Texas elucidates patterns of cranial diversity among terrestrial amphibamiforms". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae012.
- ^ Pinheiro, Felipe L.; Eltink, Estevan; Paes-Neto, Voltaire D.; Machado, Arielli F.; Simões, Tiago R.; Pierce, Stephanie E. (2024-01-19). "Interrelationships among Early Triassic faunas of Western Gondwana and Laurasia as illuminated by a new South American benthosuchid temnospondyl". The Anatomical Record. 307 (4): 726–743. doi:10.1002/ar.25384. ISSN 1932-8486. PMID 38240478.
- ^ Schoch, R. R.; Moreno, R. (2024). "Synopsis on the temnospondyls from the German Triassic". Palaeodiversity. 17 (1): 9–48. doi:10.18476/pale.v17.a2.
- ^ Werneburg, R.; Witzmann, F.; Rinehart, L.; Fischer, J.; Voigt, S. (2024). "A new eryopid temnospondyl from the Carboniferous–Permian boundary of Germany". Journal of Paleontology. 97 (6): 1251–1281. doi:10.1017/jpa.2023.58.
- ^ Gómez, R. O.; Ventura, T.; Turazzini, G. F.; Marivaux, L.; Flores, R. A.; Boscaini, A.; Fernández-Monescillo, M.; Mamani Quispe, B.; Prámparo, M. B.; Fauquette, S.; Martin, C.; Münch, P.; Pujos, F.; Antoine, P.-O. (2024). "A new early water frog (Telmatobius) from the Miocene of the Bolivian Altiplano" (PDF). Papers in Palaeontology. 10 (1). e1543. Bibcode:2024PPal...10E1543G. doi:10.1002/spp2.1543.
- ^ Santos, R. O.; Wilkinson, M.; Couto Ribeiro, G.; Carvalho, A. B.; Zaher, H. (2024). "The first fossil record of an aquatic caecilian (Gymnophiona: Typhlonectidae)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad188.
- ^ Retallack, G. J. (2024). "Late Devonian fossils of New South Wales and early tetrapod habitats". Lethaia. 57 (1): 1–19. Bibcode:2024Letha..57....1R. doi:10.18261/let.57.1.5.
- ^ Porro, L. B.; Martin-Silverstone, E.; Rayfield, E. J. (2024). "Descriptive anatomy and three-dimensional reconstruction of the skull of the tetrapod Eoherpeton watsoni Panchen, 1975 from the Carboniferous of Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–21. doi:10.1017/S175569102300018X.
- ^ Chakravorti, S.; Roy, A.; Sengupta, D. P. (2024). "Patterns of diversity of temnospondyl amphibians in India and South-East Asia". Annales de Paléontologie. 110 (1). 102686. Bibcode:2024AnPal.11002686C. doi:10.1016/j.annpal.2024.102686.
- ^ Witzmann, F.; Schoch, R. R. (2024). "Osteology and phylogenetic position of Plagiosaurus depressus (Temnospondyli: Plagiosauridae) from the Late Triassic of Germany and the repeated loss of dermal bones in plagiosaurids". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae014.
- ^ So, C.; Mann, A. (2024). "A large brachyopoid from the Middle Triassic of northern Arizona and the diversity of brachyopoid temnospondyls from the Moenkopi Formation". Fossil Record. 27 (1): 233–245. Bibcode:2024FossR..27..233S. doi:10.3897/fr.27.117611.
- ^ Schoch, R. R. (2024). "Cranial morphology and phylogenetic relationships of the Late Triassic temnospondyl Hyperokynodon keuperinus". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 147–160. doi:10.1127/njgpa/2023/1175.
- ^ Marjanović, D.; Maddin, H. C.; Olori, J. C.; Laurin, M. (2024). "The new problem of Chinlestegophis and the origin of caecilians (Amphibia, Gymnophionomorpha) is highly sensitive to old problems of sampling and character construction". Fossil Record. 27 (1): 55–94. Bibcode:2024FossR..27...55M. doi:10.3897/fr.27.e109555.
- ^ Skutschas, P. P.; Saburov, P. G.; Uliakhin, A. V.; Kolchanov, V. V. (2024). "Long Bone Morphology and Histology of the Stem Salamander Kulgeriherpeton ultimum (Caudata, Karauridae) from the Lower Cretaceous of Yakutia". Paleontological Journal. 58 (1): 101–111. Bibcode:2024PalJ...58..101S. doi:10.1134/S0031030124010076.
- ^ Syromyatnikova, E. V.; Titov, V. V.; Tesakov, A. S.; Skutschas, P. P. (2024). "A "preglacial" giant salamander from Europe: new record from the Late Pliocene of Caucasus". Comptes Rendus Palevol. 23 (3): 45–57. doi:10.5852/cr-palevol2024v23a3.
- ^ Du, B.; Zhang, J.; Gómez, R. O.; Dong, L.; Zhang, M.; Lei, X.; Li, A.; Dai, S. (2024). "A Cretaceous frog with eggs from northwestern China provides fossil evidence for sexual maturity preceding skeletal maturity in anurans". Proceedings of the Royal Society B: Biological Sciences. 291 (2016). 20232320. doi:10.1098/rspb.2023.2320. PMC 10846944. PMID 38320608.
- ^ Santos, R. O.; Carvalho, A. B.; Zaher, H. (2024). "First record of a neobatrachian frog (Lissamphibia: Neobatrachia) from the Eocene–Oligocene Aiuruoca Basin, Brazil". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2336976.
- ^ Falk, D.; Wings, O.; Unitt, R.; Wade, J.; McNamara, M. E. (2024). "Fossilized anuran soft tissues reveal a new taphonomic model for the Eocene Geiseltal Konservat-Lagerstätte, Germany". Scientific Reports. 14 (1). 7876. Bibcode:2024NatSR..14.7876F. doi:10.1038/s41598-024-55822-y. PMC 11039752. PMID 38654038.
- ^ Gómez, R. O.; Turazzini, G. F.; García-López, D. A.; Badot, M. J. (2024). "A late Eocene frog assemblage from the Geste Formation, Puna of north-western Argentina". Historical Biology: An International Journal of Paleobiology: 1–22. doi:10.1080/08912963.2024.2322532.
- ^ Villa, A.; Macaluso, L.; Mörs, T. (2024). "Miocene and Pliocene amphibians from Hambach (Germany): new evidence for a late Neogene refuge in northwestern Europe". Palaeontologia Electronica. 27 (1). 27.1.a3. doi:10.26879/1323.
- ^ Bulanov, V. V. (2024). "New Data on the Morphology and Distribution of Kotlassia prima Amalitzky (Tetrapoda, Seymouriamorpha)". Paleontological Journal. 58 (4): 434–444. doi:10.1134/S0031030124600380.
- ^ Reisz, R. R.; Maho, T.; Modesto, S. P. (2024). "Recumbirostran 'microsaurs' are not amniotes". Journal of Systematic Palaeontology. 22 (1). 2296078. Bibcode:2024JSPal..2296078R. doi:10.1080/14772019.2023.2296078.
- ^ Modesto, S. P. (2024). "Problems of the interrelationships of crown and stem amniotes". Frontiers in Earth Science. 12. 1155806. Bibcode:2024FrEaS..1255806M. doi:10.3389/feart.2024.1155806.
- ^ Voigt, S.; Calábková, G.; Ploch, I.; Nosek, V.; Pawlak, W.; Raczyński, P.; Spindler, F.; Werneburg, R. (2024). "A diadectid skin impression and its implications for the evolutionary origin of epidermal scales". Biology Letters. 20 (5). 20240041. doi:10.1098/rsbl.2024.0041. PMC 11285442. PMID 38773928.
- ^ Mao, F.; Zhang, C.; Ren, J.; Wang, T.; Wang, G.; Zhang, F.; Rich, T.; Vickers-Rich, P.; Meng, J. (2024). "Fossils document evolutionary changes of jaw joint to mammalian middle ear". Nature. 628 (8008): 576–581. Bibcode:2024Natur.628..576M. doi:10.1038/s41586-024-07235-0. PMID 38570677.
- ^ Martin, T.; Averianov, A. O.; Lang, A. J.; Schultz, J. A.; Wings, O. (2024). "Docodontans (Mammaliaformes) from the Late Jurassic of Germany". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2023.2300635.
- ^ Averianov, A. O.; Martin, T.; Lopatin, A. V.; Skutschas, P. P.; Vitenko, D. D.; Schellhorn, R.; Kolosov, P. N. (2024). "Docodontans from the Lower Cretaceous of Yakutia, Russia: new insights into diversity, morphology, and phylogeny of Docodonta". Cretaceous Research. 158. 105836. Bibcode:2024CrRes.15805836A. doi:10.1016/j.cretres.2024.105836.
- ^ Mao, F.; Li, Z.; Wang, Z.; Zhang, C.; Rich, T.; Vickers-Rich, P.; Meng, J. (2024). "Jurassic shuotheriids show earliest dental diversification of mammaliaforms". Nature. 628 (8008): 569–575. Bibcode:2024Natur.628..569M. doi:10.1038/s41586-024-07258-7. PMID 38570681.
- ^ Liu, J.; Abdala, F. (2024). "A new small baurioid therocephalian from the Lower Triassic Jiucaiyuan Formation, Xinjiang, China". Vertebrata PalAsiatica: 1. doi:10.19615/j.cnki.2096-9899.240726.
- ^ Duhamel, A.; Benoit, J.; Wynd, B.; Wright, A. M.; Rubidge, B. (2024). "Redescription of three basal anomodonts: a phylogenetic reassessment of the holotype of Eodicynodon oelofseni (NMQR 2913)". Frontiers in Earth Science. 11. 1220341. Bibcode:2024FrEaS..1120341D. doi:10.3389/feart.2023.1220341.
- ^ Kerber, L.; Roese-Miron, L.; Medina, T. G. M.; da Roberto-da-Silva, L.; Cabreira, S. F.; Pretto, F. A. (2024). "Skull anatomy and paleoneurology of a new traversodontid from the Middle-Late Triassic of Brazil". The Anatomical Record. 307 (4): 791–817. doi:10.1002/ar.25385. PMID 38282563.
- ^ Martinelli, A. G.; Ezcurra, M. D.; Fiorelli, L. E.; Escobar, J.; Hechenleitner, E. M.; von Baczko, M. B.; Taborda, J. R. A.; Desojo, J. B. (2024). "A new early-diverging probainognathian cynodont and a revision of the occurrence of cf. Aleodon from the Chañares Formation, northwestern Argentina: New clues on the faunistic composition of the latest Middle–?earliest Late Triassic Tarjadia Assemblage Zone". The Anatomical Record. 307 (4): 818–850. doi:10.1002/ar.25388. PMID 38282519.
- ^ Singh, S. A.; Elsler, A.; Stubbs, T. L.; Rayfield, E. J.; Benton, M. J. (2024). "Predatory synapsid ecomorphology signals growing dynamism of late Palaeozoic terrestrial ecosystems". Communications Biology. 7 (1). 201. doi:10.1038/s42003-024-05879-2. PMC 10874460. PMID 38368492.
- ^ Jones, K. E.; Angielczyk, K. D.; Pierce, S. E. (2024). "Origins of mammalian vertebral function revealed through digital bending experiments". Proceedings of the Royal Society B: Biological Sciences. 291 (2026). 20240820. doi:10.1098/rspb.2024.0820. PMID 38981526.
- ^ Maho, T.; Maho, S.; Bevitt, J. J.; Reisz, R. R. (2024). "Size and shape heterodonty in the early Permian synapsid Mesenosaurus efremovi". Journal of Anatomy. 245 (1): 181–196. doi:10.1111/joa.14034. PMC 11161827. PMID 38430000.
- ^ Maho, T.; Holmes, R.; Reisz, R. R. (2024). "Visual methods for documenting the preservation of large-sized synapsids at Richards Spur". Comptes Rendus Palevol. 23 (7): 95–105. Bibcode:2024CRPal..23.....M. doi:10.5852/cr-palevol2024v23a7.
- ^ Benoit, J.; Araujo, R.; Lund, E. S.; Bolton, A.; Lafferty, T.; Macungo, Z.; Fernandez, V. (2024). "Early synapsids neurosensory diversity revealed by CT and synchrotron scanning". The Anatomical Record. doi:10.1002/ar.25445. PMID 38600433.
- ^ Jirah, S.; Rubidge, B. S.; Abdala, F. (2024). "Cranial morphology of Jonkeria truculenta (Therapsida, Dinocephalia) and a taxonomic reassessment of the family Titanosuchidae". Palaeontologia Africana. 58: 1–27. hdl:10539/38605.
- ^ Rabe, C.; Marugán-Lobón, J.; Smith, R. M. H.; Chinsamy, A. (2024). "Geometric morphometric analysis of an ontogenetic cranial series of the Permian dicynodont Diictodon feliceps". Proceedings of the Royal Society B: Biological Sciences. 291 (2027). 20240626. doi:10.1098/rspb.2024.0626. PMC 11289659. PMID 39081192.
- ^ Maharaj, I. E. M.; Macungo, M.; Smith, R. M. H.; Chinsamy, A.; Araújo, R. (2024). "Taxonomic revision of the late Permian dicynodont genus Endothiodon (Therapsida, Anomodontia)". Journal of Systematic Palaeontology. 22 (1). 2346578. Bibcode:2024JSPal..2246578M. doi:10.1080/14772019.2024.2346578.
- ^ Shi, Y.-T.; Liu, J. (2024). "Osteology of Turfanodon bogdaensis (Dicynodontia)". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.240529.
- ^ George, H.; Kammerer, C. F.; Foffa, D.; Clark, N. D. L.; Brusatte, S. L. (2024). "Micro-CT data reveal new information on the craniomandibular and neuroanatomy of the dicynodont Gordonia (Therapsida: Anomodontia) from the late Permian of Scotland". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae065.
- ^ Pinto, J. L.; Marshall, C. R.; Nesbitt, S. J.; Varajão de Latorre, D. (2024). "Quantitative evidence for dimorphism suggests sexual selection in the maxillary caniniform process of Placerias hesternus". PLOS ONE. 19 (5). e0297894. Bibcode:2024PLoSO..1997894P. doi:10.1371/journal.pone.0297894. PMC 11142433. PMID 38820280.
- ^ Sidor, C. A.; Mann, A. (2024). "The sternum and interclavicle of Aelurognathus tigriceps (Broom & Haughton, 1913) (Therapsida: Gorgonopsia), with comments on sternal evolution in therapsids". Comptes Rendus Palevol. 23 (6): 85–93. doi:10.5852/cr-palevol2024v23a6.
- ^ Brant, A. J.; Sidor, C. A. (2024). "Earliest evidence of Inostrancevia in the southern hemisphere: new data from the Usili Formation of Tanzania". Journal of Vertebrate Paleontology. 43 (4). e2313622. doi:10.1080/02724634.2024.2313622.
- ^ Benoit, J.; Kammerer, C. F.; Dollman, K.; Groenewald, D. D. P.; Smith, R. M. H. (2024). "Did gorgonopsians survive the end-Permian "Great Dying" ? A re-appraisal of three gorgonopsian specimens (Therapsida, Theriodontia) reported from the Triassic Lystrosaurus declivis Assemblage Zone, Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112044. Bibcode:2024PPP...63812044B. doi:10.1016/j.palaeo.2024.112044.
- ^ Pusch, L. C.; Kammerer, C. F.; Fröbisch, J. (2024). "The origin and evolution of Cynodontia (Synapsida, Therapsida): Reassessment of the phylogeny and systematics of the earliest members of this clade using 3D-imaging technologies". The Anatomical Record. 307 (4): 1634–1730. doi:10.1002/ar.25394. PMID 38444024.
- ^ Hendrickx, C.; Abdala, F.; Filippini, F. S.; Wills, S.; Benson, R.; Choiniere, J. N. (2024). "Evolution of postcanine complexity in Gomphodontia (Therapsida: Cynodontia)". The Anatomical Record. 307 (4): 1613–1633. doi:10.1002/ar.25386. PMID 38282465.
- ^ Roese-Miron, L.; Dotto, P. H.; Medina, T. G. M.; Da-Rosa, Á. A. S.; Müller, R. T.; Kerber, L. (2024). "Stranger in the nest: On the biostratigraphic relevance of a new record of a traversodontid cynodont in southern Brazil (Candelária Sequence, Upper Triassic)". Palaeoworld. doi:10.1016/j.palwor.2024.05.008.
- ^ Kaiuca, J. F. L.; Martinelli, A. G.; Schultz, C. L.; Fonseca, P. H. M.; Tavares, W. C.; Soares, M. B. (2024). "Weighing in on miniaturization: New body mass estimates for Triassic eucynodonts and analyses of body size evolution during the cynodont-mammal transition". The Anatomical Record. 307 (4): 1594–1612. doi:10.1002/ar.25377. PMID 38229416.
- ^ Fonseca, P. H. M.; Martinelli, A. G.; Gill, P. G.; Rayfield, E. J.; Schultz, C. L.; Kerber, L.; Ribeiro, A. M.; Francischini, H.; Soares, M. B. (2024). "New evidence from high-resolution computed microtomography of Triassic stem-mammal skulls from South America enhances discussions on turbinates before the origin of Mammaliaformes". Scientific Reports. 14 (1). 13817. Bibcode:2024NatSR..1413817F. doi:10.1038/s41598-024-64434-5. PMC 11180108. PMID 38879680.
- ^ Fonseca, P. H. M.; Martinelli, A. G.; Gill, P. G.; Rayfield, E. J.; Schultz, C. L.; Kerber, L.; Ribeiro, A. M.; Soares, M. B. (2024). "Anatomy of the maxillary canal of Riograndia guaibensis (Cynodontia, Probainognathia)—A prozostrodont from the Late Triassic of southern Brazil". The Anatomical Record. doi:10.1002/ar.25540. PMID 39039851.
- ^ Szczygielski, T.; Van den Brandt, M. J.; Gaetano, L.; Dróżdż, D. (2024). "Saurodesmus robertsoni Seeley 1891—The oldest Scottish cynodont". PLOS ONE. 19 (5). e0303973. Bibcode:2024PLoSO..1903973S. doi:10.1371/journal.pone.0303973. PMC 11135747. PMID 38809839.
- ^ Hurtado, H.; Harris, J. D.; Milner, A. R. C. (2024). "Possible eucynodont (Synapsida: Cynodontia) tracks from a lacustrine facies in the Lower Jurassic Moenave Formation of southwestern Utah". PeerJ. 12. e17591. doi:10.7717/peerj.17591. PMC 11214430. PMID 38948213.
- ^ Hoffmann, S.; Malik, R. S.; Vidyasagar, A.; Gill, P. (2024). "The inner ear and stapes of the basal mammaliaform Morganucodon revisited: new information on labyrinth morphology and promontorial vascularization". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae062.
- ^ Martin, T.; Averianov, A. O.; Lang, A. J.; Wings, O. (2024). "Lower molars of the large morganucodontan Storchodon cingulatus from the Late Jurassic (Kimmeridgian) of Germany". PalZ. Bibcode:2024PalZ..tmp...18M. doi:10.1007/s12542-024-00690-0.
{{cite journal}}
: CS1 maint: bibcode (link) - ^ Averianov, A. O.; Voyta, L. L. (2024). "Putative Triassic stem mammal Tikitherium copei is a Neogene shrew". Journal of Mammalian Evolution. 31. 10. doi:10.1007/s10914-024-09703-w.
- ^ Panciroli, E.; Benson, R. B. J.; Fernandez, V.; Fraser, N. C.; Humpage, M.; Luo, Z.-X.; Newham, E.; Walsh, S. (2024). "Jurassic fossil juvenile reveals prolonged life history in early mammals". Nature: 1–8. doi:10.1038/s41586-024-07733-1. PMID 39048827.
- ^ Brocklehurst, N. (2024). "The decline and fall of the mammalian stem". PeerJ. 12. e17004. doi:10.7717/peerj.17004. PMC 10906263. PMID 38436024.
- ^ Zhang, H.; Wang, Q-J.; Zhang, C.-W.; Luo, D.-D.; Luo, X.-C.; Wang, Y.-F.; Wang, D.-Z.; Yang, X.-L. (2024). "Chancelloriids from the Cambrian (Stage 4) Balang Lagerstätte of South China and a reappraisal of their diversification in South China". Geobios. 84: 103–114. Bibcode:2024Geobi..84..103Z. doi:10.1016/j.geobios.2023.12.001.
- ^ Wang, D.; Qiang, Y.; Guo, J.; Vannier, J.; Song, Z.; Peng, J.; Zhang, B.; Sun, J.; Yu, Y.; Zhang, Y.; Zhang, T.; Yang, X.; Han, J. (2024). "Early evolution of the ecdysozoan body plan". eLife. 13. RP94709. doi:10.7554/eLife.94709. PMC 11231812. PMID 38976315.
- ^ a b c d Malinky, J. M.; Geyer, G. (2024). "Early Cambrian hyoliths from the Brigus Formation of Avalonian Newfoundland". Alcheringa: An Australasian Journal of Palaeontology. 48 (1): 1–41. Bibcode:2024Alch...48....1M. doi:10.1080/03115518.2023.2293724.
- ^ a b c Jeon, J.; Kershaw, S.; Li, Y.; Chen, Z.-Y.; Toom, U.; Yu, S.-Y.; Zhang, Y.-D. (2024). "Stromatoporoids of the upper Hirnantian (Upper Ordovician) Shiqian Formation of South China: implications for environmental interpretation and the Ordovician–Silurian stromatoporoid transition". Journal of Systematic Palaeontology. 22 (1). 2351930. Bibcode:2024JSPal..2251930J. doi:10.1080/14772019.2024.2351930.
- ^ a b Vinn, O.; Wilson, M. A.; Madison, A.; Ernst, A.; Toom, U. (2024). "Dwarf cornulitid tubeworms from the Hirnantian (Late Ordovician) of Estonia". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2318796.
- ^ Fang, H.; Poinar, G. O.; Wang, H.; Wang, B.; Luo, C. (2024). "First spider-parasitized mermithid nematode from mid-Cretaceous Kachin amber of northern Myanmar". Cretaceous Research. 158. 105866. Bibcode:2024CrRes.15805866F. doi:10.1016/j.cretres.2024.105866.
- ^ Aria, C.; Caron, J.-B. (2024). "Deep origin of articulation strategies in panarthropods: evidence from a new luolishaniid lobopodian (Panarthropoda) from the Tulip Beds, Burgess Shale". Journal of Systematic Palaeontology. 22 (1). 2356090. Bibcode:2024JSPal..2256090A. doi:10.1080/14772019.2024.2356090.
- ^ Luzhnaya, E. A. (2024). "A New Spheromorphic Problematic of the Genus Gaparella from the Lower Cambrian of Western Mongolia". Paleontological Journal. 58 (2): 144–150. Bibcode:2024PalJ...58..144L. doi:10.1134/S0031030123600282.
- ^ Davydov, A. E.; Yashunsky, Yu. V.; Mirantsev, G. V.; Krutykh, A. A. (2024). "New Hypercalcified Calcareous Sponges from the Gzhelian Stage of the Moscow Region". Paleontological Journal. 57 (11): 1325–1351. Bibcode:2024PalJ...57.1325D. doi:10.1134/S0031030123110035.
- ^ Wang, X.; Liu, A. G.; Chen, Z.; Wu, C.; Liu, Y.; Wan, B.; Pang, K.; Zhou, C.; Yuan, X.; Xiao, S. (2024). "A late-Ediacaran crown-group sponge animal". Nature. 630 (8018): 905–911. Bibcode:2024Natur.630..905W. doi:10.1038/s41586-024-07520-y. PMID 38839967.
- ^ Zhao, M.; Mussini, G.; Li, Y.; Tang, F.; Vickers-Rich, P.; Li, M.; Chen, A. (2024). "A putative triradial macrofossil from the Ediacaran Jiangchuan Biota". iScience. 27 (2): 108823. Bibcode:2024iSci...27j8823Z. doi:10.1016/j.isci.2024.108823. PMC 10831930. PMID 38303714.
- ^ a b Vinn, O.; Wilson, M. A.; Jäger, M.; Kočí, T. (2024). "The earliest true Spirorbinae from the late Bathonian and Callovian (Middle Jurassic) of France, Israel and Madagascar". PalZ. 98 (2): 223–244. Bibcode:2024PalZ...98..223V. doi:10.1007/s12542-023-00681-7.
- ^ Lerosey-Aubril, R.; Ortega-Hernández, J. (2024). "A long-headed Cambrian soft-bodied vertebrate from the American Great Basin region". Royal Society Open Science. 11 (7). 240350. doi:10.1098/rsos.240350. PMC 11267725. PMID 39050723.
- ^ Malysheva, E. N. (2024). "A New Species Paradeningeria magna sp. nov. (Sphinctozoa, Porifera) from the Nakhodka Reef (Southern Primorye)". Paleontological Journal. 58 (3): 259–263. Bibcode:2024PalJ...58..259M. doi:10.1134/S0031030124700047.
- ^ Vinn, O.; Wilson, M. A.; Toom, U. (2024). "A new genus and species of cornulitid tubeworm from the Hirnantian (Late Ordovician) of Estonia". Journal of Paleontology. 98 (1): 40–46. Bibcode:2024JPal...98...40V. doi:10.1017/jpa.2023.90.
- ^ Nanglu, K.; Ortega-Hernández, J. (2024). "Post-Cambrian survival of the tubicolous scalidophoran Selkirkia". Biology Letters. 20 (3). 20240042. doi:10.1098/rsbl.2024.0042. PMC 10965325. PMID 38531414.
- ^ Kočí, T.; Milàn, J.; Jakobsen, S. L.; Bashforth, A. R. (2024). "Serpula? alicecooperi sp. nov. – a new serpulid from the Lower Jurassic (Pliensbachian) Hasle Formation of Bornholm, Denmark". Bulletin of the Geological Society of Denmark. 73: 41–56. doi:10.37570/bgsd-2024-73-02.
- ^ a b c Pervushov, E. M. (2024). "Genus Sororistirps (Porifera, Hexactinellida, Ventriculitidae)". Izvestiya of Saratov University. Earth Sciences. 24 (1): 56–70. doi:10.18500/1819-7663-2024-24-1-56-70.
- ^ Tonarová, P.; Suttner, T. J.; Hints, O.; Liang, Y.; Zemek, M.; Kubajko, M.; Zikmund, T.; Kaiser, J.; Kido, E. (2024). "Late Ordovician scolecodonts and chitinozoans from the Pin Valley in Spiti, Himachal Pradesh, northern India". Acta Palaeontologica Polonica. 69 (2): 199–215. doi:10.4202/app.01135.2024.
- ^ Park, T.Y. S.; Nielsen, M. L.; Parry, L. A.; Sørensen, M. V.; Lee, M.; Kihm, J.H.; Ahn, I.; Park, C.; De Vivo, G.; Smith, M. P.; Harper, D. A. T.; Nielsen, A. T.; Vinther, J. (2024). "A giant stem-group chaetognath". Science Advances. 10 (1): eadi6678. Bibcode:2024SciA...10I6678P. doi:10.1126/sciadv.adi6678. PMC 10796117. PMID 38170772.
- ^ Botha, T. L.; García-Bellido, D. C. (2024). "A new species of the iconic triradial Ediacaran genus Tribrachidium from Nilpena Ediacara National Park, Flinders Ranges (South Australia)". Journal of Paleontology. 98 (1): 1–12. Bibcode:2024JPal...98....1B. doi:10.1017/jpa.2023.99. hdl:2440/140681.
- ^ Poinar, G. (2024). "Ectoparasitic nematodes developing in the integument of a Baltic amber pseudoscorpion". Historical Biology: An International Journal of Paleobiology: 1–4. doi:10.1080/08912963.2024.2341848.
- ^ Sun, H.; Zhao, F.; Wu, R.; Zeng, H.; Sun, Z. (2024). "Spatiotemporal distribution and morphological diversity of the Cambrian Wiwaxia: New insights from South China". Global and Planetary Change. 239. 104507. Bibcode:2024GPC...23904507S. doi:10.1016/j.gloplacha.2024.104507.
- ^ Morais, L.; Freitas, B. T.; Fairchild, T. R.; Arcos, R. E. C.; Guillong, M.; Vance, D.; Campos, M. D. R.; Babinski, M.; Pereira, L. G.; Leme, J. M.; Boggiani, P. C.; Osés, G. L.; Rudnitzki, I. D.; Galante, D.; Rodrigues, F.; Trindade, R. I. F. (2024). "Dawn of diverse shelled and carbonaceous animal microfossils at ~ 571 Ma". Scientific Reports. 14 (1). 14916. Bibcode:2024NatSR..1414916M. doi:10.1038/s41598-024-65671-4. PMC 11213954. PMID 38942912.
- ^ Delahooke, K. M.; Liu, A. G.; Stephenson, N. P.; Mitchell, E. G. (2024). "'Conga lines' of Ediacaran fronds: insights into the reproductive biology of early metazoans". Royal Society Open Science. 11 (5). 231601. Bibcode:2024RSOS...1131601D. doi:10.1098/rsos.231601. PMC 11286166. PMID 39076788.
- ^ Cao, J.; Meng, F.; Cai, Y. (2024). "Simulation of Ediacaran Cloudina tubular growth model via electrochemical synthesis". Journal of Asian Earth Sciences. 264. 106056. Bibcode:2024JAESc.26406056C. doi:10.1016/j.jseaes.2024.106056.
- ^ Wang, J.; Song, B.; Liang, Y.; Liang, K.; Zhang, Z. (2024). "The Internal Anatomy and Water Current System of Cambrian Archaeocyaths of South China". Life. 14 (2). 167. Bibcode:2024Life...14..167W. doi:10.3390/life14020167. PMC 10890368. PMID 38398676.
- ^ Pruss, S. B.; Karbowski, G.; Zhuravlev, A. Yu.; Webster, M.; Smith, E. F. (2024). "Dead clade walking: the persistence of Archaeocyathus in the aftermath of early Cambrian reef extinction in the western United States". PALAIOS. 39 (6): 210–224. Bibcode:2024Palai..39..210P. doi:10.2110/palo.2024.005.
- ^ Kershaw, S.; Jeon, J. (2024). "Stromatoporoids and extinctions: A review". Earth-Science Reviews. 252. 104721. Bibcode:2024ESRv..25204721K. doi:10.1016/j.earscirev.2024.104721.
- ^ Botha, T. L.; Droser, M. L.; García-Bellido, D. C.; Sherratt, E. (2024). "Morphometric investigation of Tribrachidium from Nilpena Ediacara National Park, South Australia". Palaeontologia Electronica. 27 (2). 27.2.a36. doi:10.26879/1374.
- ^ Zhao, Y.; Chen, A.; Klug, C.; Lei, X.; Cong, P. (2024). "Adaptations to changing substrates in diploblastic dinomischids from the early Cambrian". Palaeogeography, Palaeoclimatology, Palaeoecology. 648. 112301. Bibcode:2024PPP...64812301Z. doi:10.1016/j.palaeo.2024.112301.
- ^ Turk, K. A.; Pulsipher, M. A.; Bergh, E.; Laflamme, M.; Darroch, S. A. F. (2024). "Archaeichnium haughtoni: a robust burrow lining from the Ediacaran–Cambrian transition of Namibia". Papers in Palaeontology. 10 (1). e1546. Bibcode:2024PPal...10E1546T. doi:10.1002/spp2.1546.
- ^ Yu, C.; Wang, D.; Han, J. (2024). "Cambrian palaeoscolecidomorph Cricocosmia caught in the act of moulting". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2324427.
- ^ Howard, R. J.; Parry, L. A.; Clatworthy, I.; D'Souza, L.; Edgecombe, G. D. (2024). "Palaeoscolecids from the Ludlow Series of Leintwardine, Herefordshire (UK): the latest occurrence of palaeoscolecids in the fossil record". Papers in Palaeontology. 10 (3). e1558. Bibcode:2024PPal...10E1558H. doi:10.1002/spp2.1558.
- ^ Chen, A.; Vannier, J.; Guo, J.; Wang, D.; Gąsiorek, P.; Han, J.; Ma, W. (2024). "Molting in early Cambrian armored lobopodians". Communications Biology. 7 (1). 820. doi:10.1038/s42003-024-06440-x. PMC 11226638. PMID 38969778.
- ^ Luo, C.; Palm, H. W.; Zhuang, Y.; Jarzembowski, E. A.; Nyunt, T. T.; Wang, B. (2024). "Exceptional preservation of a marine tapeworm tentacle in Cretaceous amber". Geology. 52 (7): 497–501. Bibcode:2024Geo....52..497L. doi:10.1130/G52071.1.
- ^ Yang, X.; Aguado, M. T.; Helm, C.; Zhang, Z.; Bleidorn, C. (2024). "New fossil of Gaoloufangchaeta advances the origin of Errantia (Annelida) to the early Cambrian". Royal Society Open Science. 11 (4). 231580. Bibcode:2024RSOS...1131580Y. doi:10.1098/rsos.231580. PMC 11004674. PMID 38601033.
- ^ Słowiński, J.; Clapham, M.; Zatoń, M. (2024). "The Upper Permian tubular fossils from South China and their possible affinity to sabellid polychaetes". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2324448.
- ^ Jamison-Todd, S.; Mannion, P. D.; Glover, A. G.; Upchurch, P. (2024). "New occurrences of the bone-eating worm Osedax from Late Cretaceous marine reptiles and implications for its biogeography and diversification". Proceedings of the Royal Society B: Biological Sciences. 291 (2020). 20232830. doi:10.1098/rspb.2023.2830. PMC 11003772. PMID 38593847.
- ^ Liu, F.; Topper, T. P.; Strotz, L. C.; Liang, Y.; Hu, Y.; Skovsted, C. B.; Zhang, Z. (2024). "Morphological disparity and evolutionary patterns of Cambrian hyoliths". Papers in Palaeontology. 10 (2). e1554. Bibcode:2024PPal...10E1554L. doi:10.1002/spp2.1554.
- ^ Mussini, G.; Smith, M. P.; Vinther, J.; Rahman, I. A.; Murdock, D. J. E.; Harper, D. A. T.; Dunn, F. S. (2024). "A new interpretation of Pikaia reveals the origins of the chordate body plan". Current Biology. 34 (13): 2980–2989.e2. doi:10.1016/j.cub.2024.05.026. PMID 38866005.
- ^ De Backer, T.; Day, J. E.; Emsbo, P.; McLaughlin, P. I.; Vandenbroucke, T. R. A. (2024). "Chitinozoan response to the 'Kellwasser events': population dynamics and morphological deformities across the Frasnian–Famennian mass extinction". Papers in Palaeontology. 10 (3). e1557. Bibcode:2024PPal...10E1557D. doi:10.1002/spp2.1557.
- ^ Camina, S.; Rubinstein, C. V.; Butcher, A.; Lovecchio, J. P. (2024). "Middle - Late Silurian and Early Devonian chitinozoans from the Chacoparaná Basin, Salta Province, Argentina". Ameghiniana. 61 (2): 93–117. doi:10.5710/AMGH.22.03.2024.3592.
- ^ Sashida, K.; Hong, P.; Ito, T.; Salyapongse, S.; Putthapiban, P. (2024). "Late Triassic (Late Early to Early Middle Norian) and Late Triassic or Early Jurassic Radiolarians from Limestone in the Tha Sao Area, Kanchanaburi Province, Western Thailand: Low-Latitude Fauna in the Eastern Tethys". Paleontological Research. 28 (1): 37–67. doi:10.2517/PR220007.
- ^ Denezine, M.; Do Carmo, D. A.; Xiao, S.; Tang, Q.; Sergeev, V.; Mazoni, A. F.; Zabini, C. (2024). "Organic-walled microfossils from the Ediacaran Sete Lagoas Formation, Bambuí Group, Southeast Brazil: taxonomic and biostratigraphic analyses". Journal of Paleontology: 1–25. doi:10.1017/jpa.2023.83.
- ^ a b Camina, S. C; Rubinstein, C. V.; Butcher, A.; Muro, V. J. G.; Vergani, G.; Pereira, M. (2024). "A new chitinozoan assemblage from the Middle Devonian Los Monos Formation (sub-Andean basin, southern Bolivia) and its biozonal implications for Western Gondwana". PLOS ONE. 19 (4). e0297233. Bibcode:2024PLoSO..1997233C. doi:10.1371/journal.pone.0297233. PMC 11003639. PMID 38593119.
- ^ a b Shang, X.; Liu, P. (2024). "Taxonomic reviews for genera Megasphaera, Membranospinosphaera and Spinomargosphaera of the Ediacaran spheroidal acritarchs". Precambrian Research. 407. 107409. Bibcode:2024PreR..40707409S. doi:10.1016/j.precamres.2024.107409.
- ^ Granier, B. R. C. (2024). "Octahedronoides tethysianus n.gen., n.sp., enigmatic clusters of microspheres at the Jurassic-Cretaceous transition". Carnets Geol. 24 (7): 127–133. doi:10.2110/carnets.2024.2407.
- ^ a b Dai, Q.-K.; Hua, H.; Luo, J.-Z.; Min, X.; Pan, X.-Q.; Liu, Z.-W.; Zhang, S.; Bai, L. (2024). "New Ediacaran tubular fossils from southern Shaanxi, China". Palaeoworld. doi:10.1016/j.palwor.2024.01.004.
- ^ Dernov, V. S.; Poletaev, V. I. (2024). "New geological and palaeontological data of the Dyakove Group (Carboniferous) and age-related rock formations of the central Donets Basin, Ukraine". Geologičnij žurnal. 2024 (1): 3–21. doi:10.30836/igs.1025-6814.2024.1.285644.
- ^ Kanaparthi, D.; Lampe, M.; Zhu, B.; Boesen, T.; Klingl, A.; Schwille, J.; Lueders, T. (2024). "On the nature of the earliest known life forms". eLife. 13. doi:10.7554/eLife.98637.
- ^ Demoulin, C. F.; Sforna, M. C.; Lara, Y. J.; Cornet, Y.; Somogyi, A.; Medjoubi, K.; Grolimund, D.; Sanchez, D. F.; Tachoueres, R. T.; Addad, A.; Fadel, A.; Compère, P.; Javaux, E. J. (2024). "Polysphaeroides filiformis, a Proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution". iScience. 27 (2). 108865. Bibcode:2024iSci...27j8865D. doi:10.1016/j.isci.2024.108865. PMC 10837632. PMID 38313056.
- ^ Demoulin, C. F.; Lara, Y. J.; Lambion, A.; Javaux, E. J. (2024). "Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis". Nature. 625 (7995): 529–534. Bibcode:2024Natur.625..529D. doi:10.1038/s41586-023-06896-7. PMID 38172638.
- ^ Min, X.; Hua, H.; Sun, B.; Dai, Q.; Luo, J. (2024). "Phosphatised calcified cyanobacteria at the terminal Ediacaran and the earliest Cambrian transition stage: Response to the paleoenvironment". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112057. Bibcode:2024PPP...63812057M. doi:10.1016/j.palaeo.2024.112057.
- ^ McMahon, S.; Loron, C. C.; Cooper, L. M.; Hetherington, A. J.; Krings, M. (2024). "Entophysalis in the Rhynie chert (Lower Devonian, Scotland): implications for cyanobacterial evolution". Geological Magazine. 160 (10): 1946–1952. doi:10.1017/S0016756824000049.
- ^ Miao, L.; Yin, Z.; Knoll, A. H.; Qu, Y.; Zhu, M. (2024). "1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China". Science Advances. 10 (4): eadk3208. Bibcode:2024SciA...10K3208M. doi:10.1126/sciadv.adk3208. PMC 10807817. PMID 38266082.
- ^ Nielson, G. C.; Stüeken, E. E.; Prave, A. R. (2024). "Estuaries house Earth's oldest known non-marine eukaryotes". Precambrian Research. 401. 107278. Bibcode:2024PreR..40107278N. doi:10.1016/j.precamres.2023.107278. hdl:10023/28949.
- ^ Porfirio-Sousa, A. L.; Tice, A. K.; Morais, L.; Ribeiro, G. M.; Blandenier, Q.; Dumack, K.; Eglit, Y.; Fry, N. W.; Souza, M. B. G. E.; Henderson, T. C.; Kleitz-Singleton, F.; Singer, D.; Brown, M. W.; Lahr, D. J. G. (2024). "Amoebozoan testate amoebae illuminate the diversity of heterotrophs and the complexity of ecosystems throughout geological time". Proceedings of the National Academy of Sciences of the United States of America. 121 (30). e2319628121. doi:10.1073/pnas.2319628121. PMC 11287125. PMID 39012821.
- ^ Swain, A.; Woodhouse, A.; Fagan, W. F.; Fraass, A. J.; Lowery, C. M. (2024). "Biogeographic response of marine plankton to Cenozoic environmental changes". Nature. 629 (8012): 616–623. Bibcode:2024Natur.629..616S. doi:10.1038/s41586-024-07337-9. PMID 38632405.
- ^ Surprenant, R. L.; Droser, M. L. (2024). "New insight into the global record of the Ediacaran tubular morphotype: a common solution to early multicellularity". Royal Society Open Science. 11 (3). 231313. Bibcode:2024RSOS...1131313S. doi:10.1098/rsos.231313. PMC 10951727. PMID 38511078.
- ^ Sun, W.; Yin, Z.; Liu, P.; Zhu, M.; Donoghue, P. (2024). "Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans". Proceedings of the Royal Society B: Biological Sciences. 291 (2023). 20240101. doi:10.1098/rspb.2024.0101. PMC 11286131. PMID 38808442.
- ^ Moody, E. R. R.; Álvarez-Carretero, S.; Mahendrarajah, T. A.; Clark, J. W.; Betts, H. C.; Dombrowski, N.; Szánthó, L. L.; Boyle, R. A.; Daines, S.; Chen, X.; Lane, N.; Yang, Z.; Shields, G. A.; Szöllősi, G. J.; Spang, A.; Pisani, D.; Williams, T. A.; Lenton, T. M.; Donoghue, P. C. J. (2024). "The nature of the last universal common ancestor and its impact on the early Earth system". Nature Ecology & Evolution: 1–13. doi:10.1038/s41559-024-02461-1. PMID 38997462.
- ^ Kaiho, K.; Shizuya, A.; Kikuchi, M.; Komiya, T.; Chen, Z.-Q.; Tong, J.; Tian, L.; Gorjan, P.; Takahashi, S.; Baud, A.; Grasby, S. E.; Saito, R.; Saltzman, M. R. (2024). "Oxygen increase and the pacing of early animal evolution". Global and Planetary Change. 233. 104364. Bibcode:2024GPC...23304364K. doi:10.1016/j.gloplacha.2024.104364.
- ^ Crockett, W. W.; Shaw, J. O.; Simpson, C.; Kempes, C. P. (2024). "Physical constraints during Snowball Earth drive the evolution of multicellularity". Proceedings of the Royal Society B: Biological Sciences. 291 (2025). 20232767. doi:10.1098/rspb.2023.2767. PMC 11271684. PMID 38924758.
- ^ Bowyer, F. T.; Wood, R. A.; Yilales, M. (2024). "Sea level controls on Ediacaran-Cambrian animal radiations". Science Advances. 10 (31): eado6462. doi:10.1126/sciadv.ado6462. PMID 39083611.
- ^ Gutarra, S.; Mitchell, E. G.; Dunn, F. S.; Gibson, B. M.; Racicot, R. A.; Darroch, S. A. F.; Rahman, I. A. (2024). "Ediacaran marine animal forests and the ventilation of the oceans". Current Biology. 34 (11): 2528–2534.e3. doi:10.1016/j.cub.2024.04.059. PMID 38761801.
- ^ Clarke, A. J. I.; Kirkland, C. L.; Menon, L. R.; Condon, D. J.; Cope, J. C. W.; Bevins, R. E.; Glorie, S. (2024). "U–Pb zircon–rutile dating of the Llangynog Inlier, Wales: constraints on an Ediacaran shallow-marine fossil assemblage from East Avalonia". Journal of the Geological Society. 181 (1). Bibcode:2024JGSoc.181...81C. doi:10.1144/jgs2023-081.
- ^ Dai, Q.; Hua, H.; Luo, J.; Min, X.; Liu, Z.; Zhang, S.; Gong, M.; Bai, L. (2024). "A new silicified microfossil assemblage from the Ediacaran Dengying Formation in South Shaanxi, China". Precambrian Research. 403. 107308. Bibcode:2024PreR..40307308D. doi:10.1016/j.precamres.2024.107308.
- ^ Wilson, C. J.; Reitan, T.; Liow, L. H. (2024). "Unveiling the underlying drivers of Phanerozoic marine diversification". Proceedings of the Royal Society B: Biological Sciences. 291 (2025). 20240165. doi:10.1098/rspb.2024.0165. PMC 11285786. PMID 38889777.
- ^ Cui, L.; Liu, W.; Li, J.; Zhang, X. (2024). "Cyanobacterial and fungi-like microbial fossils from the earliest Cambrian phosphorite of South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 649. 112339. Bibcode:2024PPP...64912339C. doi:10.1016/j.palaeo.2024.112339.
- ^ Wei, K.; Cao, H.; Chen, F.; Wang, Z.; An, Z.; Huang, H.; Chen, C. (2024). "Fluctuation in redox conditions and the evolution of early Cambrian life constrained by nitrogen isotopes in the middle Yangtze Block, South China". Geological Magazine. 160 (10): 1932–1945. doi:10.1017/S0016756823000833.
- ^ Slater, B. J. (2024). "Life in the Cambrian shallows: Exceptionally preserved arthropod and mollusk microfossils from the early Cambrian of Sweden". Geology. 52 (4): 256–260. Bibcode:2024Geo....52..256S. doi:10.1130/G51829.1.
- ^ Gaines, R. R.; García-Bellido, D. C.; Jago, J. B.; Myrow, P. M.; Paterson, J. R. (2024). "The Emu Bay Shale: A unique early Cambrian Lagerstätte from a tectonically active basin". Science Advances. 10 (30): eadp2650. doi:10.1126/sciadv.adp2650. PMC 11277394. PMID 39058778.
- ^ Myrow, P. M.; Goodge, J. W.; Brock, G. A.; Betts, M. J.; Park, T.-Y. S.; Hughes, N. C.; Gaines, R. R. (2024). "Tectonic trigger to the first major extinction of the Phanerozoic: The early Cambrian Sinsk event". Science Advances. 10 (13): eadl3452. Bibcode:2024SciA...10L3452M. doi:10.1126/sciadv.adl3452. PMC 10980278. PMID 38552008.
- ^ Malanoski, C. M.; Farnsworth, A.; Lunt, D. J.; Valdes, P. J.; Saupe, E. E. (2024). "Climate change is an important predictor of extinction risk on macroevolutionary timescales". Science. 383 (6687): 1130–1134. Bibcode:2024Sci...383.1130M. doi:10.1126/science.adj5763. PMID 38452067.
- ^ Saleh, F.; Lustri, L.; Gueriau, P.; Potin, G. J.-M.; Pérez-Peris, F.; Laibl, L.; Jamart, V.; Vite, A.; Antcliffe, J. B.; Daley, A. C.; Nohejlová, M.; Dupichaud, C.; Schöder, S.; Bérard, E.; Lynch, S.; Drage, H. B.; Vaucher, R.; Vidal, M.; Monceret, E.; Monceret, S.; Lefebvre, B. (2024). "The Cabrières Biota (France) provides insights into Ordovician polar ecosystems". Nature Ecology & Evolution. 8 (4): 651–662. Bibcode:2024NatEE...8..651S. doi:10.1038/s41559-024-02331-w. PMC 11009115. PMID 38337049.
- ^ Young, G. C. (2024). "Relative age of the Devonian tetrapod Metaxygnathus, based on the associated fossil fish assemblage at Jemalong, New South Wales". Alcheringa: An Australasian Journal of Palaeontology. 48 (2): 278–297. Bibcode:2024Alch...48..278Y. doi:10.1080/03115518.2024.2327039.
- ^ Faure-Brac, M. G.; Woodward, H. N.; Aubier, P.; Cubo, J. (2024). "On the origins of endothermy in amniotes". iScience. 27 (4). 109375. Bibcode:2024iSci...27j9375F. doi:10.1016/j.isci.2024.109375. PMC 10966186. PMID 38544566.
- ^ Wu, Q.; Zhang, H.; Ramezani, J.; Zhang, F.-F.; Erwin, D. H.; Feng, Z.; Shao, L.-Y.; Cai, Y.-F.; Zhang, S.-H.; Xu, Y.-G.; Shen, S.-Z. (2024). "The terrestrial end-Permian mass extinction in the paleotropics postdates the marine extinction". Science Advances. 10 (5): eadi7284. Bibcode:2024SciA...10I7284W. doi:10.1126/sciadv.adi7284. PMC 10830061. PMID 38295161.
- ^ He, W.; Weldon, E. A.; Yang, T.; Wang, H.; Xiao, Y.; Zhang, K.; Peng, X.; Feng, Q. (2024). "An end-Permian two-stage extinction pattern in the deep-water Dongpan Section, and its relationship to the migration and vertical expansion of the oxygen minimum zone in the South China Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 649. 112307. Bibcode:2024PPP...64912307H. doi:10.1016/j.palaeo.2024.112307.
- ^ Song, H.; Wu, Y.; Dai, X.; Dal Corso, J.; Wang, F.; Feng, Y.; Chu, D.; Tian, L.; Song, H.; Foster, W. J. (2024). "Respiratory protein-driven selectivity during the Permian–Triassic mass extinction". The Innovation. 5 (3). 100618. Bibcode:2024Innov...500618S. doi:10.1016/j.xinn.2024.100618. PMC 11025005. PMID 38638583.
- ^ Liu, X.; Song, H.; Chu, D.; Dai, X.; Wang, F.; Silvestro, D. (2024). "Heterogeneous selectivity and morphological evolution of marine clades during the Permian–Triassic mass extinction". Nature Ecology & Evolution. 8 (7): 1248–1258. Bibcode:2024NatEE...8.1248L. doi:10.1038/s41559-024-02438-0. PMID 38862784.
- ^ Zhou, C.Y.; Zhang, Q.Y.; Wen, W.; Huang, J.Y.; Hu, S.X.; Liu, W.; Min, X.; Ma, Z.X.; Wen, Q.Q. (2024). "A new Early Triassic fossil Lagerstätte from Wangmo, Guizhou Province". Sedimentary Geology and Tethyan Geology. 44 (1): 1–8. doi:10.19826/j.cnki.1009-3850.2022.06011.
- ^ Leu, M.; Schneebeli-Hermann, E.; Hammer, Ø.; Lindemann, F.-J.; Bucher, H. (2024). "Spatiotemporal dynamics of nektonic biodiversity and vegetation shifts during the Smithian–Spathian transition: conodont and palynomorph insights from Svalbard". Lethaia. 57 (2): 1–19. doi:10.18261/let.57.2.3.
- ^ Shishkin, M. A.; Novikov, I. V.; Sennikov, A. G.; Golubev, V. K.; Morkovin, B. I. (2024). "Triassic Tetrapods of Russia". Paleontological Journal. 57 (12): 1353–1539. Bibcode:2024PalJ...57.1353S. doi:10.1134/S0031030123120067.
- ^ Klein, H.; Lucas, S. G.; Lallensack, J. N.; Marchetti, L. (2024). "Peabody's legacy: the Moenkopi Formation (Middle Triassic, Anisian) tetrapod ichnofauna—updates from an extensive new tracksite in NE Arizona, USA". PalZ. 98 (2): 357–389. Bibcode:2024PalZ...98..357K. doi:10.1007/s12542-023-00680-8.
- ^ Simms, M. J.; Drost, K. (2024). "Caves, dinosaurs and the Carnian Pluvial Episode: Recalibrating Britain's Triassic bone 'fissures'". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112041. doi:10.1016/j.palaeo.2024.112041.
- ^ Campo, M. L.; Silva, F. O.; Paes Neto, V. D.; Ferigolo, J.; Ribeiro, A. M. (2024). "Overview on the tetrapods from Faixa Nova-Cerrito I site (Hyperodapedon Assemblage Zone), Upper Triassic of southernmost Brazil". Historical Biology: An International Journal of Paleobiology: 1–19. doi:10.1080/08912963.2024.2344791.
- ^ Curry Rogers, K.; Martínez, R. N.; Colombi, C.; Rogers, R. R.; Alcober, O. (2024). "Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries". PLOS ONE. 19 (4). e0298242. Bibcode:2024PLoSO..1998242C. doi:10.1371/journal.pone.0298242. PMC 10990230. PMID 38568908.
- ^ Serafini, G.; Danise, S.; Maxwell, E. E.; Martire, L.; Amalfitano, J.; Cobianchi, M.; Thun Hohenstein, U.; Giusberti, L. (2024). "Of his bones are crinoid made: taphonomy and deadfall ecology of marine reptiles from a pelagic setting (Middle-Upper Jurassic of northeastern Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 97–128. doi:10.54103/2039-4942/22314. hdl:11577/3511241.
- ^ Maidment, S. C. R. (2024). "Diversity through time and space in the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Vertebrate Paleontology. e2326027. doi:10.1080/02724634.2024.2326027.
- ^ Aouraghe, H.; Chennouf, R.; Haddoumi, H.; Lasseron, M.; Mhamdi, H.; Gheerbrant, E.; Martin, J. E. (2024). "A new Gondwanan perspective on the Jurassic-Cretaceous transition from the Tithonian-Berriasian interval of southeastern Morocco". Cretaceous Research. 162. 105932. Bibcode:2024CrRes.16205932A. doi:10.1016/j.cretres.2024.105932.
- ^ Blake, L.; Fursman, M.; Duffin, C. J.; Batchelor, T.; Hildebrandt, C.; Benton, M. J. (2024). "Microvertebrates from the Lower Greensand Group (Lower Cretaceous) of Clophill, Bedfordshire, UK, and Nutfield, Surrey, UK". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2024.07.002.
- ^ Bălc, R.; Bindiu-Haitonic, R.; Kövecsi, S.-A.; Vremir, M.; Ducea, M.; Csiki-Sava, Z.; Tabără, D.; Vasile, Ș. (2024). "Integrated biostratigraphy of Upper cretaceous deposits from an exceptional continental vertebrate-bearing marine section (Transylvanian Basin, Romania) provides new constraints on the advent of 'dwarf dinosaur' faunas in Eastern Europe". Marine Micropaleontology. 187. 102328. Bibcode:2024MarMP.18702328B. doi:10.1016/j.marmicro.2023.102328.
- ^ Wilson, L. N.; Gardner, J. D.; Wilson, J. P.; Farnsworth, A.; Perry, Z. R.; Druckenmiller, P. S.; Erickson, G. M.; Organ, C. L. (2024). "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals". Nature Communications. 15 (1). 2864. Bibcode:2024NatCo..15.2864W. doi:10.1038/s41467-024-46843-2. PMC 10997647. PMID 38580657.
- ^ Sarr, R.; Hill, R. V.; Jenkins, X. A.; Tapanila, L.; O'Leary, M. A. (2024). "A composite section of fossiliferous Late Cretaceous-Early Paleogene localities in Senegal and preliminary description of a new late Maastrichtian vertebrate fossil assemblage". American Museum Novitates (4013): 1–31. doi:10.1206/4013.1. hdl:2246/7357.
- ^ Boles, Z. M.; Ullmann, P. V.; Putnam, I.; Ford, M.; Deckhut, J. T. (2024). "New vertebrate microfossils expand the diversity of the chondrichthyan and actinopterygian fauna of the Maastrichtian–Danian Hornerstown Formation in New Jersey". Acta Palaeontologica Polonica. 69 (2): 173–198. doi:10.4202/app.01117.2023.
- ^ Martinuš, M.; Cvetko Tešović, B.; Jurić, S.; Vlahović, I. (2024). "Patch reefs with scleractinian corals and layered domical and bulbous growth forms (calcified sponges?) in the upper Maastrichtian and lowermost Palaeocene platform carbonates, Adriatic islands of Brač and Hvar (Croatia)". Palaeogeography, Palaeoclimatology, Palaeoecology. 639. 112056. Bibcode:2024PPP...63912056M. doi:10.1016/j.palaeo.2024.112056.
- ^ Tian, S. Y.; Yasuhara, M.; Condamine, F. L.; Huang, H.-H. M.; Fernando, A. G. S.; Aguilar, Y. M.; Pandita, H.; Irizuki, T.; Iwatani, H.; Shin, C. P.; Renema, W.; Kase, T. (2024). "Cenozoic history of the tropical marine biodiversity hotspot". Nature: 1–7. doi:10.1038/s41586-024-07617-4. PMID 38926582.
- ^ Brandoni, D.; Schmidt, G. I.; Bona, P.; Tarquini, J.; Vlachos, E.; Noriega, J. I. (2024). "New vertebrates from the Ituzaingó Formation (Late Miocene of Entre Ríos Province, Argentina), including first records of Leptodactylus (Amphibia, Anura) and Chelonoidis (Testudines, Cryptodira)". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2024.2379039.
- ^ Naksri, W.; Nishioka, Y.; Duangkrayom, J.; Métais, G.; Handa, N.; Jintasakul, P.; Martin, J. E.; Sila, S.; Sukdi, W.; Suasamong, K.; Tong, H.; Claude, J. (2024). "A new Miocene and Pleistocene continental locality from Nakhon Ratchasima in Northeastern Thailand and its importance for vertebrate biogeography". Annales de Paléontologie. 109 (4). 102659. doi:10.1016/j.annpal.2023.102659.
- ^ Tattersfield, P.; Rowson, B.; Ngereza, C. F.; Harrison, T. (2024). "Laetoli, Tanzania: Extant terrestrial mollusc faunas shed new light on climate and palaeoecology at a Pliocene hominin site". PLOS ONE. 19 (5). e0302435. Bibcode:2024PLoSO..1902435T. doi:10.1371/journal.pone.0302435. PMC 11098377. PMID 38753816.
- ^ Antoine, P.-O.; Wieringa, L. N.; Adnet, S.; Aguilera, O.; Bodin, S. C.; Cairns, S.; Conejeros-Vargas, C. A.; Cornée, J.-J.; Ežerinskis, Ž.; Fietzke, J.; Gribenski, N. O.; Grouard, S.; Hendy, A.; Hoorn, C.; Joannes-Boyau, R.; Langer, M. R.; Luque, J.; Marivaux, L.; Moissette, P.; Nooren, K.; Quillévéré, F.; Šapolaitė, J.; Sciumbata, M.; Valla, P. G.; Witteveen, N. H.; Casanova, A.; Clavier, S.; Bidgrain, P.; Gallay, M.; Rhoné, M.; Heuret, A. (2024). "A Late Pleistocene coastal ecosystem in French Guiana was hyperdiverse relative to today". Proceedings of the National Academy of Sciences of the United States of America. 121 (14). e2311597121. Bibcode:2024PNAS..12111597A. doi:10.1073/pnas.2311597121. PMC 10998618. PMID 38527199.
- ^ Chi Fru, E.; Aubineau, J.; Bankole, O.; Ghnahalla, M.; Soh Tamehe, L.; El Albani, A. (2024). "Hydrothermal seawater eutrophication triggered local macrobiological experimentation in the 2100 Ma Paleoproterozoic Francevillian sub-basin". Precambrian Research. 409. 107453. Bibcode:2024PreR..40907453C. doi:10.1016/j.precamres.2024.107453.
- ^ Stockey, R. G.; Cole, D. B.; Farrell, U. C.; Agić, H.; Boag, T. H.; Brocks, J. J.; Canfield, D. E.; Cheng, M.; Crockford, P. W.; Cui, H.; Dahl, T. W.; Del Mouro, L.; Dewing, K.; Dornbos, S. Q.; Emmings, J. F.; Gaines, R. R.; Gibson, T. M.; Gill, B. C.; Gilleaudeau, G. J.; Goldberg, K.; Guilbaud, R.; Halverson, G.; Hammarlund, E. U.; Hantsoo, K.; Henderson, M. A.; Henderson, C. M.; Hodgskiss, M. S. W.; Jarrett, A. J. M.; Johnston, D. T.; Kabanov, P.; Kimmig, J.; Knoll, A. H.; Kunzmann, M.; LeRoy, M. A.; Li, C.; Loydell, D. K.; Macdonald, F. A.; Magnall, J. M.; Mills, N. T.; Och, L. M.; O'Connell, B.; Pagès, A.; Peters, S. E.; Porter, S. M.; Poulton, S. W.; Ritzer, S. R.; Rooney, A. D.; Schoepfer, S.; Smith, E. F.; Strauss, J. V.; Uhlein, G. J.; White, T.; Wood, R. A.; Woltz, C. R.; Yurchenko, I.; Planavsky, N. J.; Sperling, E. A. (2024). "Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras". Nature Geoscience. 17 (7): 667–674. Bibcode:2024NatGe..17..667S. doi:10.1038/s41561-024-01479-1.
- ^ Huang, W.; Tarduno, J. A.; Zhou, T.; Ibañez-Mejia, M.; Dal Olmo-Barbosa, L.; Koester, E.; Blackman, E. G.; Smirnov, A. V.; Ahrendt, G.; Cottrell, R. D.; Kodama, K. P.; Bono, R. K.; Sibeck, D. G.; Li, Y.-X.; Nimmo, F.; Xiao, S.; Watkeys, M. K. (2024). "Near-collapse of the geomagnetic field may have contributed to atmospheric oxygenation and animal radiation in the Ediacaran Period". Communications Earth & Environment. 5 (1). 207. Bibcode:2024ComEE...5..207H. doi:10.1038/s43247-024-01360-4.
- ^ Becker Kerber, B.; Prado, G. M. E. M.; Archilha, N. L.; Warren, L. V.; Simões, M. G.; Lino, L. M.; Quiroz-Valle, F. R.; Mouro, L. D.; El Albani, A.; Mazurier, A.; Paim, P. S. G.; Chemale, F.; Zucatti da Rosa, A. L.; de Barros, G. E. B.; El Kabouri, J.; Basei, M. A. S. (2024). "Ediacaran tectographs from the Itajaí Basin: A cautionary tale from the Precambrian". Precambrian Research. 403. 107307. Bibcode:2024PreR..40307307B. doi:10.1016/j.precamres.2024.107307.
- ^ Lei, X.; Cong, P.; Zhang, S.; Wei, F.; Anderson, R. P. (2024). "Unveiling an ignored taphonomic window in the early Cambrian Chengjiang Biota". Geology. doi:10.1130/G52215.1.
- ^ Jacobs, G. S.; Jacquet, S. M.; Selly, T.; Schiffbauer, J. D.; Huntley, J. W. (2024). "Resolving taphonomic and preparation biases in silicified faunas through paired acid residues and X-ray microscopy". PeerJ. 12. e16767. doi:10.7717/peerj.16767. PMC 10838534. PMID 38313011.
- ^ Dernov, V. (2024). "Re-evaluation of Rugoinfractus ovruchensis Paliy, 1974 from the Devonian Tovkachi Formation (Ovruch Syncline, Ukraine) as desiccation cracks, not a trace fossil". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (2): 205–213. doi:10.1127/njgpa/2024/1194.
- ^ Lestari, W.; Al-Suwaidi, A.; Fox, C. P.; Vajda, V.; Hennhoefer, D. (2024). "Carbon cycle perturbations and environmental change of the middle Permian and Late Triassic Paleo-Antarctic circle". Scientific Reports. 14 (1). 9742. Bibcode:2024NatSR..14.9742L. doi:10.1038/s41598-024-60088-5. PMC 11056376. PMID 38679621.
- ^ Li, R.; Shen, S.-Z.; Xia, X.-P.; Xiao, B.; Feng, Y.; Chen, H. (2024). "Atmospheric ozone destruction and the end-Permian crisis: Evidence from multiple sulfur isotopes". Chemical Geology. 647. 121936. doi:10.1016/j.chemgeo.2024.121936.
- ^ Lukeneder, A.; Lukeneder, P.; Sachsenhofer, R. F.; Roghi, G.; Rigo, M. (2024). "Multi-proxy record of the Austrian Upper Triassic Polzberg Konservat-Lagerstätte in light of the Carnian Pluvial Episode". Scientific Reports. 14 (1). 11194. Bibcode:2024NatSR..1411194L. doi:10.1038/s41598-024-60591-9. PMC 11109357. PMID 38773130.
- ^ Rigo, M.; Jin, X.; Godfrey, L.; Katz, M. E.; Sato, H.; Tomimatsu, Y.; Zaffani, M.; Maron, M.; Satolli, S.; Concheri, G.; Cardinali, A.; Wu, Q.; Du, Y.; Lei, J. Z. X.; van Wieren, C. S.; Tackett, L. S.; Campbell, H.; Bertinelli, A.; Onoue, T. (2024). "Unveiling a new oceanic anoxic event at the Norian/Rhaetian boundary (Late Triassic)". Scientific Reports. 14 (1). 15574. Bibcode:2024NatSR..1415574R. doi:10.1038/s41598-024-66343-z. PMC 11227520. PMID 38971867.
- ^ Bos, R.; Zheng, W.; Lindström, S.; Sanei, H.; Waajen, I.; Fendley, I. M.; Mather, T. A.; Wang, Y.; Rohovec, J.; Navrátil, T.; Sluijs, A.; van de Schootbrugge, B. (2024). "Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction". Nature Communications. 15 (1). 3596. Bibcode:2024NatCo..15.3596B. doi:10.1038/s41467-024-47922-0. PMID 38678037.
- ^ Remírez, M. N.; Gilleaudeau, G. J.; Gan, T.; Kipp, M. A.; Tissot, F. L. H.; Kaufman, A. J.; Parente, M. (2024). "Carbonate uranium isotopes record global expansion of marine anoxia during the Toarcian Oceanic Anoxic Event". Proceedings of the National Academy of Sciences of the United States of America. 121 (27). e2406032121. Bibcode:2024PNAS..12106032R. doi:10.1073/pnas.2406032121. PMC 11228476. PMID 38913904.
- ^ Song, S.; Teng, X.; Zhang, X.; Zhang, H.; Zheng, D. (2024). "Calibrating the Jehol Biota in the Baiwan Basin of the North Qinling Orogenic Belt, central China". Cretaceous Research. 105972. doi:10.1016/j.cretres.2024.105972.
- ^ Woolley, C. H.; Bottjer, D. J.; Corsetti, F. A.; Smith, N. D. (2024). "Quantifying the effects of exceptional fossil preservation on the global availability of phylogenetic data in deep time". PLOS ONE. 19 (2). e0297637. Bibcode:2024PLoSO..1997637W. doi:10.1371/journal.pone.0297637. PMC 10866489. PMID 38354167.
- ^ Almeida, R. P.; Althaus, C. E.; Janikian, L.; Gomes, P. V. O.; Figueiredo, F. T.; Sawakuchi, A. O.; Freitas, B. T.; Silva, L. H. G. (2024). "Reappraisal of the Cretaceous and Paleogene paleogeography of eastern Amazonia based on systematic paleocurrent measurements". Cretaceous Research. 163. 105948. Bibcode:2024CrRes.16305948A. doi:10.1016/j.cretres.2024.105948.
- ^ Eberth, D. A. (2024). "Stratigraphic architecture of the Belly River Group (Campanian, Cretaceous) in the plains of southern Alberta: Revisions and updates to an existing model and implications for correlating dinosaur-rich strata". PLOS ONE. 19 (1). e0292318. Bibcode:2024PLoSO..1992318E. doi:10.1371/journal.pone.0292318. PMC 10810474. PMID 38271406.
- ^ Rao, Z. C.; Lueders-Dumont, J. A.; Stringer, G. L.; Ryu, Y.; Zhao, K.; Myneni, S. C.; Oleynik, S.; Haug, G. H.; Martinez-Garcia, A.; Sigman, D. M. (2024). "A nitrogen isotopic shift in fish otolith–bound organic matter during the Late Cretaceous". Proceedings of the National Academy of Sciences of the United States of America. 121 (32). e2322863121. doi:10.1073/pnas.2322863121. PMID 39074276.
- ^ Wostbrock, J. A. G.; Witts, J. D.; Gao, Y.; Peshek, C.; Myers, C. E.; Henkes, G.; Sharp, Z. D. (2024). "Reconstructing paleoenvironments of the Late Cretaceous Western Interior Seaway, USA, using paired triple oxygen and carbonate clumped isotope measurements". GSA Bulletin. doi:10.1130/B37543.1.
- ^ Moretti, S.; Auderset, A.; Deutsch, C.; Schmitz, R.; Gerber, L.; Thomas, E.; Luciani, V.; Petrizzo, M. R.; Schiebel, R.; Tripati, A.; Sexton, P.; Norris, R.; D'Onofrio, R.; Zachos, J.; Sigman, D. M.; Haug, G. H.; Martínez-García, A. (2024). "Oxygen rise in the tropical upper ocean during the Paleocene-Eocene Thermal Maximum". Science. 383 (6684): 727–731. Bibcode:2024Sci...383..727M. doi:10.1126/science.adh4893. PMID 38359106.
- ^ Klages, J. P.; Hillenbrand, C.-D.; Bohaty, S. M.; Salzmann, U.; Bickert, T.; Lohmann, G.; Knahl, H. S.; Gierz, P.; Niu, L.; Titschack, J.; Kuhn, G.; Frederichs, T.; Müller, J.; Bauersachs, T.; Larter, R. D.; Hochmuth, K.; Ehrmann, W.; Nehrke, G.; Rodríguez-Tovar, F. J.; Schmiedl, G.; Spezzaferri, S.; Läufer, A.; Lisker, F.; van de Flierdt, T.; Eisenhauer, A.; Uenzelmann-Neben, G.; Esper, O.; Smith, J. A.; Pälike, H.; Spiegel, C.; Dziadek, R.; Ronge, T. A.; Freudenthal, T.; Gohl, K. (2024). "Ice sheet–free West Antarctica during peak early Oligocene glaciation". Science. 385 (6706): 322–327. Bibcode:2024Sci...385..322K. doi:10.1126/science.adj3931. PMID 38963876.
- ^ Wilson, O. E.; Sánchez, R.; Chávez-Aponte, E.; Carrillo-Briceño, J. D.; Saarinen, J. (2024). "Application of herbivore ecometrics to reconstruct terrestrial palaeoenvironments in Falcón, Venezuela". Palaeogeography, Palaeoclimatology, Palaeoecology. 112397. doi:10.1016/j.palaeo.2024.112397.
- ^ Yu, W.; Herries, A. I. R.; Edwards, T.; Armstrong, B.; Joannes-Boyau, R. (2024). "Combined uranium-series and electron spin resonance dating from the Pliocene fossil sites of Aves and Milo's palaeocaves, Bolt's Farm, Cradle of Humankind, South Africa". PeerJ. 12. e17478. doi:10.7717/peerj.17478. PMC 11216204. PMID 38952976.
- ^ Bird, M. I.; Brand, M.; Comley, R.; Fu, X.; Hadeen, H.; Jacobs, Z.; Rowe, C.; Wurster, C. M.; Zwart, C.; Bradshaw, C. J. A. (2024). "Late Pleistocene emergence of an anthropogenic fire regime in Australia's tropical savannahs". Nature Geoscience. 17 (3): 233–240. Bibcode:2024NatGe..17..233B. doi:10.1038/s41561-024-01388-3.
- ^ Wiseman, A. L. A.; Charles, J. P.; Hutchinson, J. R. (2024). "Static versus dynamic muscle modelling in extinct species: a biomechanical case study of the Australopithecus afarensis pelvis and lower extremity". PeerJ. 12. e16821. doi:10.7717/peerj.16821. PMC 10838096. PMID 38313026.
- ^ Sullivan, C.; Sissons, R.; Sharpe, H.; Nguyen, K.; Theurer, B. (2024). "Skeletal reconstruction of fossil vertebrates as a process of hypothesis testing and a source of anatomical and palaeobiological inferences". Comptes Rendus Palevol. 23 (5): 69–83. doi:10.5852/cr-palevol2024v23a5.
- ^ Didier, G.; Laurin, M. (2024). "Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions". Cladistics. 40 (3): 282–306. doi:10.1111/cla.12577. PMID 38651531.
- ^ Cooper, R. B.; Flannery-Sutherland, J. T.; Silvestro, D. (2024). "DeepDive: estimating global biodiversity patterns through time using deep learning". Nature Communications. 15 (1). 4199. Bibcode:2024NatCo..15.4199C. doi:10.1038/s41467-024-48434-7. PMC 11101433. PMID 38760390.
- ^ Hauffe, T.; Cantalapiedra, J. L.; Silvestro, D. (2024). "Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks". Science Advances. 10 (30): eadl2643. doi:10.1126/sciadv.adl2643. PMC 11268411. PMID 39047110.
- ^ Reumer, J. W. F. (2024). "The first case of paleontological fraud: Beringer's Lügensteine reconsidered". Revue de Paléobiologie, Genève. 43 (1): 155–162.
- ^ Isson, T.; Rauzi, S. (2024). "Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history". Science. 383 (6683): 666–670. Bibcode:2024Sci...383..666I. doi:10.1126/science.adg1366. PMID 38330122.
- ^ Rauzi, S.; Foster, W. J.; Takahashi, S.; Hori, R. S.; Beaty, B. J.; Tarhan, L. G.; Isson, T. (2024). "Lithium isotopic evidence for enhanced reverse weathering during the Early Triassic warm period". Proceedings of the National Academy of Sciences of the United States of America. 121 (32). e2318860121. doi:10.1073/pnas.2318860121. PMID 39074280.
- ^ Gurung, K.; Field, K. J.; Batterman, S. A.; Poulton, S. W.; Mills, B. J. W. (2024). "Geographic range of plants drives long-term climate change". Nature Communications. 15 (1). 1805. Bibcode:2024NatCo..15.1805G. doi:10.1038/s41467-024-46105-1. PMC 10901853. PMID 38418475.
- ^ Kairouani, H.; Abbassi, A.; Zaghloul, M. N.; El Mourabet, M.; Micheletti, F.; Fornelli, A.; Mongelli, G.; Critelli, S. (2024). "The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution". Marine and Petroleum Geology. 163. 106762. Bibcode:2024MarPG.16306762K. doi:10.1016/j.marpetgeo.2024.106762.
- ^ Nordt, L.; Breecker, D.; White, J. (2024). "The early Cretaceous was cold but punctuated by warm snaps resulting from episodic volcanism". Communications Earth & Environment. 5 (1). 223. Bibcode:2024ComEE...5..223N. doi:10.1038/s43247-024-01389-5.
- ^ Wang, T.; Yang, P.; He, S.; Hoffmann, R.; Zhang, Q.; Farnsworth, A.; Feng, Y.; Randrianaly, H. N.; Xie, J.; Yue, Y.; Zhao, J.; Ding, L. (2024). "Absolute age and temperature of belemnite rostra: Constraints on the Early Cretaceous cooling event". Global and Planetary Change. 233. 104353. Bibcode:2024GPC...23304353W. doi:10.1016/j.gloplacha.2023.104353.
- ^ Clark, P. U.; Shakun, J. D.; Rosenthal, Y.; Köhler, P.; Bartlein, P. J. (2024). "Global and regional temperature change over the past 4.5 million years" (PDF). Science. 383 (6685): 884–890. Bibcode:2024Sci...383..884C. doi:10.1126/science.adi1908. PMID 38386742.
- ^ Amarathunga, U.; Rohling, E. J.; Grant, K. M.; Francke, A.; Latimer, J.; Klaebe, R. M.; Heslop, D.; Roberts, A. P.; Hutchinson, D. K. (2024). "Mid-Pliocene glaciation preceded by a 0.5-million-year North African humid period". Nature Geoscience. 17 (7): 660–666. Bibcode:2024NatGe..17..660A. doi:10.1038/s41561-024-01472-8.
- ^ An, Z.; Zhou, W.; Zhang, Z.; Zhang, X.; Liu, Z.; Sun, Y.; Clemens, S. C.; Wu, L.; Zhao, J.; Shi, Z.; Ma, X.; Yan, H.; Li, G.; Cai, Y.; Yu, J.; Sun, Y.; Li, S.; Zhang, Y.; Stepanek, C.; Lohmann, G.; Dong, G.; Cheng, H.; Liu, Y.; Jin, Z.; Li, T.; Hao, Y.; Lei, J.; Cai, W. (2024). "Mid-Pleistocene climate transition triggered by Antarctic Ice Sheet growth". Science. 385 (6708): 560–565. doi:10.1126/science.abn4861. PMID 39088600.
- ^ jones, K. (February 28, 2024). "Estella Bergere Leopold, environmentalist and daughter of Aldo Leopold, dies at 97".