Jump to content

PSI (computational chemistry)

From Wikipedia, the free encyclopedia
Psi4
Developer(s)The Psi4 Project
Stable release
Psi4 1.8 / May 11, 2023; 14 months ago (2023-05-11)[1]
Repository
Written inC++, Python
Operating systemLinux, Microsoft Windows, Mac OS X
TypeComputational chemistry
LicenseGPL
Websitehttp://www.psicode.org

Psi is an ab initio computational chemistry package originally written by the research group of Henry F. Schaefer, III (University of Georgia). Utilizing Psi, one can perform a calculation on a molecular system with various kinds of methods such as Hartree-Fock, Post-Hartree–Fock electron correlation methods, and density functional theory.[2][3] The program can compute energies, optimize molecular geometries, and compute vibrational frequencies.[2][3] The major part of the program is written in C++, while Python API is also available, which allows users to perform complex computations or automate tasks easily.[2][4][5][6]

Psi4 is the latest release of the program package - it is open source, released as free under the GPL through GitHub. Primary development of Psi4 is currently performed by the research groups of David Sherrill (Georgia Tech), T. Daniel Crawford (Virginia Tech), Francesco Evangelista (Emory University), and Henry F. Schaefer, III (University of Georgia), with substantial contributions by Justin Turney (University of Georgia), Andy Simmonett (NIH), and Rollin King (Bethel University).[2][4][5][6] Psi4 is available on Linux releases such as Fedora and Ubuntu.

Features

[edit]

The basic capabilities of Psi are concentrated around the following methods[2] of quantum chemistry:

Several methods are available for computing excited electronic states, including configuration interaction singles (CIS), the random phase approximation (RPA), time-dependent density functional theory (TD-DFT), and equation-of-motion coupled cluster (EOM-CCSD).[2]

Psi4 has introduced the density-fitting approximation in many portions of the code, leading to faster computations and reduced I/O requirements.[2][4][5]

Psi4 is the preferred quantum chemistry backend for the OpenFermion project, which seeks to perform quantum chemistry computations on quantum computers.[7]

In Psi4 1.4,[6] the program was adapted to facilitate high-throughput workflows and can be connected to BrianQC to speed up calculations for Hartree-Fock and Density functional theory methods.

See also

[edit]

References

[edit]
  1. ^ "v1.8 — May 2023". May 11, 2023. Retrieved September 2, 2023.
  2. ^ a b c d e f g "Psi4: Open-Source Quantum Chemistry". The PSI4 Project. Retrieved 2017-07-06.
  3. ^ a b Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan (2016). "Open source molecular modeling". Journal of Molecular Graphics and Modelling. 69: 127–143. doi:10.1016/j.jmgm.2016.07.008. ISSN 1093-3263. PMC 5037051. PMID 27631126.
  4. ^ a b c Turney, Justin M.; Simmonett, Andrew C.; Parrish, Robert M.; Hohenstein, Edward G.; Evangelista, Francesco A.; Fermann, Justin T.; Mintz, Benjamin J.; Burns, Lori A.; Wilke, Jeremiah J.; Abrams, Micah L.; Russ, Nicholas J.; Leininger, Matthew L.; Janssen, Curtis L.; Seidl, Edward T.; Allen, Wesley D.; Schaefer, Henry F.; King, Rollin A.; Valeev, Edward F.; Sherrill, C. David; Crawford, T. Daniel (2012). "Psi4: an open-source ab initio electronic structure program". Wiley Interdisciplinary Reviews: Computational Molecular Science. 2 (4): 556–565. doi:10.1002/wcms.93. ISSN 1759-0876. S2CID 57101524.
  5. ^ a b c Parrish, Robert M.; Burns, Lori A.; Smith, Daniel G. A.; Simmonett, Andrew C.; DePrince, A. Eugene; Hohenstein, Edward G.; Bozkaya, Uğur; Sokolov, Alexander Yu.; Di Remigio, Roberto; Richard, Ryan M.; Gonthier, Jérôme F.; James, Andrew M.; McAlexander, Harley R.; Kumar, Ashutosh; Saitow, Masaaki; Wang, Xiao; Pritchard, Benjamin P.; Verma, Prakash; Schaefer, Henry F.; Patkowski, Konrad; King, Rollin A.; Valeev, Edward F.; Evangelista, Francesco A.; Turney, Justin M.; Crawford, T. Daniel; Sherrill, C. David (2017). "Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability" (PDF). Journal of Chemical Theory and Computation. 13 (7): 3185–3197. doi:10.1021/acs.jctc.7b00174. ISSN 1549-9618. PMC 7495355. PMID 28489372.
  6. ^ a b c Smith, Daniel G. A.; Burns, Lori A.; Simmonett, Andrew C.; Parrish, Robert M.; Schieber, Matthew C.; Galvelis, Raimondas; Kraus, Peter; Kruse, Holger; Di Remigio, Roberto; Alenaizan, Asem; James, Andrew M; Lehtola, Susi; Misiewicz, Jonathon P.; Scheuer, Maximilian; Shaw, Robert A.; Schriber, Jeffrey B.; Xie, Yi; Glick, Zachary L.; Sirianni, Dominic A.; O'Brien, Joseph Senan; Waldrop, Jonathan M.; Kumar, Ashutosh; Hohenstein, Edward G.; Pritchard, Benjamin P.; Brooks, Bernard R.; Schaefer III, Henry F.; Sokolov, Alexander Yu.; Patkowski, Konrad; DePrince, A. Eugene; Bozkaya, Uğur; King, Rollin A.; Evangelista, Francesco A.; Turney, Justin M.; Crawford, T. Daniel; Sherrill, C. David (2020). "Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry". Journal of Chemical Physics. 152 (18): 184108. Bibcode:2020JChPh.152r4108S. doi:10.1063/5.0006002. hdl:10138/321376. PMC 7228781. PMID 32414239.
  7. ^ Kahn, Jeremy (October 23, 2017). "Google Debuts Software to Open Up Quantum Computers for Chemists". Bloomberg Technology. Bloomberg LP. Retrieved 8 April 2018.
[edit]