Mathematics concept
In mathematics, finite-dimensional distributions are a tool in the study of measures and stochastic processes. A lot of information can be gained by studying the "projection" of a measure (or process) onto a finite-dimensional vector space (or finite collection of times).
Finite-dimensional distributions of a measure
[edit]
Let
be a measure space. The finite-dimensional distributions of
are the pushforward measures
, where
,
, is any measurable function.
Finite-dimensional distributions of a stochastic process
[edit]
Let
be a probability space and let
be a stochastic process. The finite-dimensional distributions of
are the push forward measures
on the product space
for
defined by

Very often, this condition is stated in terms of measurable rectangles:

The definition of the finite-dimensional distributions of a process
is related to the definition for a measure
in the following way: recall that the law
of
is a measure on the collection
of all functions from
into
. In general, this is an infinite-dimensional space. The finite dimensional distributions of
are the push forward measures
on the finite-dimensional product space
, where

is the natural "evaluate at times
" function.
Relation to tightness
[edit]
It can be shown that if a sequence of probability measures
is tight and all the finite-dimensional distributions of the
converge weakly to the corresponding finite-dimensional distributions of some probability measure
, then
converges weakly to
.