Square-free element
Appearance
(Redirected from Square-free)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (December 2015) |
In mathematics, a square-free element is an element r of a unique factorization domain R that is not divisible by a non-trivial square. This means that every s such that is a unit of R.
Alternate characterizations
[edit]Square-free elements may be also characterized using their prime decomposition. The unique factorization property means that a non-zero non-unit r can be represented as a product of prime elements
Then r is square-free if and only if the primes pi are pairwise non-associated (i.e. that it doesn't have two of the same prime as factors, which would make it divisible by a square number).
Examples
[edit]Common examples of square-free elements include square-free integers and square-free polynomials.
See also
[edit]References
[edit]- David Darling (2004) The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes John Wiley & Sons
- Baker, R. C. "The square-free divisor problem." The Quarterly Journal of Mathematics 45.3 (1994): 269-277.