Dmitry Gudkov (mathematician)
Appearance
Dmitrii Andreevich Gudkov (1918–1992; alternative spelling Dmitry) was a Soviet mathematician famous for his work on Hilbert's sixteenth problem and the related Gudkov's conjecture in algebraic geometry.[1] He was a student of Aleksandr Andronov.[2][3][4]
Selected papers
[edit]- D. A. Gudkov, "The topology of real projective algebraic varieties", Russian Mathematical Surveys, 1974, 29 (4), pp. 1–79 (translated from the Russian original).
- D. A. Gudkov "Periodicity of the Euler characteristic of real algebraic (M—1)-manifolds", Functional Analysis and Its Applications, April–June, 1973, Volume 7, Issue 2, pp. 98–102 (translated from the Russian original).
- D.A Gudkov. "Ovals of sixth order curves". in the book Nine Papers on Hilbert's 16th Problem American Mathematical Society 112, pp. 9–14 (translated from the Russian original).
References
[edit]- ^ V. Kharlamov – Topology of Real Algebraic Varieties and Related Topics, pp. 1–10
- ^ Vladimir I. Arnold – Real Algebraic Geometry, p. 44
- ^ Dmitry Gudkov at the Mathematics Genealogy Project
- ^ Jeremy Gray – The Hilbert Challenge, p. 147