Jump to content

John David Jackson (physicist)

From Wikipedia, the free encyclopedia
(Redirected from J. David Jackson)
John David Jackson
Jackson in 2013
Born(1925-01-19)January 19, 1925
DiedMay 20, 2016(2016-05-20) (aged 91)
NationalityCanadian
American
Alma materUniversity of Western Ontario
MIT
Known forClassical Electrodynamics
AwardsHon. D.Sc., University of Western Ontario, 1989
Scientific career
FieldsNuclear physics
Particle physics
Electrodynamics
InstitutionsMIT
McGill University
University of Illinois
University of California, Berkeley
Lawrence Berkeley National Laboratory
Doctoral advisorVictor Frederick Weisskopf
Doctoral studentsGordon L. Kane
Chris Quigg
Richard D. Field

John David Jackson (January 19, 1925 – May 20, 2016) was a Canadian–American theoretical physicist. He was a professor at the University of California, Berkeley and a faculty senior scientist emeritus at Lawrence Berkeley National Laboratory.[1][2]

Jackson was a member of the National Academy of Sciences and was well known for his work in nuclear and particle physics,[3] as well as his widely used graduate text on classical electrodynamics.[4][5]

Early life and education[edit]

Born in London, Ontario, Canada, Jackson attended the University of Western Ontario, receiving a B.Sc. in honors physics and mathematics in 1946. He went on to graduate study at MIT, where he worked under Victor Weisskopf, completing his Ph.D. thesis in 1949.[6][7]

Academic career[edit]

Jackson held academic appointments successively at McGill University, thanks to Philip Russell Wallace, a prominent Canadian theoretical physicist, (January 1950 – 1957); then the University of Illinois at Urbana–Champaign (1957–1967); and finally the University of California, Berkeley (1967–1995). At McGill, he was Assistant and Associate Professor of Mathematics; at Illinois and Berkeley, he was in the Physics Departments. At the latter, he held appointments on campus and at the Lawrence Berkeley National Laboratory. After retiring from teaching in 1993, he continued to be active at LBNL.[6]

McGill and Princeton[edit]

At McGill in the 1950s, in addition to appreciable teaching, Jackson found time for research on atomic processes and nuclear reactions at intermediate energies and the beginnings of his book on classical electricity and magnetism.[1]

While on leave at Princeton University, he found a fruitful collaboration with Sam Treiman and H. W. Wyld on weak interactions, particularly the various observable decay correlations in allowed nuclear beta decay involving the electron's momentum,[1] its spin, the neutrino's momentum, and the nuclear spin that provide information about parity conservation or non-conservation and time reversal conservation or not.[8][9] He also published an early paper on the theoretical foundation for the then recently discovered muon-catalyzed fusion of hydrogen isotopes.[1][10][11]

Illinois (1957–1967) and CERN (1963–64)[edit]

While at the University of Illinois (1957–1967) Jackson initially continued work on weak interactions as well as strange particle interactions at low energy with Wyld and others. On sabbatical leave at CERN in 1963–64, he collaborated with Kurt Gottfried on production and decay of unstable resonances in high-energy hadronic collisions.[12][13][1][14] They introduced the use of the density matrix to connect production mechanisms to the decay patterns and described the influence of competing processes ("absorption") on the reactions.[15]

During this period Jackson lectured at three summer schools—on dispersion relations at the first Scottish Universities Summer School in Physics, 1960; on weak interactions at the Brandeis Summer Institute, 1962; and on particle and polarization decay distributions at the Summer School of Theoretical Physics, Les Houches, 1965.[16][1] He also published three books, one on particle physics, based on lectures at the Canadian Summer School in Edmonton and Jasper, 1957;[17] the second, a small book on mathematics for quantum mechanics (1962) and the third, also in 1962, the first edition of his text on classical electrodynamics.[4][16] The book is notorious for the difficulty of its problems, and its tendency to treat non-obvious conclusions as self-evident. Jackson's high standards and admonitory vocabulary are the subject of an amusing memorial volume by his son Ian Jackson.[18]

Berkeley[edit]

Moving to Berkeley in 1967, Jackson taught on campus, both introductory courses for physicists and engineers and graduate courses in particle physics and quantum mechanics. His lecture notes from the latter have been made into book.[19] He did his research at LBNL and served in administrative positions at both the campus (Chair, University of California, Berkeley (UCB) Physics Department, 1978–1981) and the lab (Head, LBNL Physics Division, January 1982 – June 1984). In the formative years of the ill-fated Superconducting Super Collider (SSC) project, he served as deputy director of operations of the SSC Central Design Group.[6][1]

In the 1960s and 1970s his research alone and with students focused in journal publications and conference papers on models of high energy processes, radiative and resolution corrections for resonances in electron–positron annihilation, spin-flip synchrotron radiation and the polarization of electrons in a storage ring, and, after November 1974, the spectroscopy of the charm–anticharm particles. In 1973, he lectured again at the Scottish Universities Summer School in Physics (SUSSP), on hadronic interactions at high energies,[16][1] and in 1976 at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory's, SLAC Summer Institute (SSI), on charmonium spectroscopy.[1][20] In 1973–74 he ran the nascent theory group at Fermilab and co-edited the proceedings of the 1973 "Rochester" Conference.[16]

In January 1977 Jackson began a 17-year stint as Editor of Annual Review of Nuclear and Particle Science.[1] In much of the 1980s he was involved with many others in the high-energy physics community in activities aimed at the next step up in accelerators. Then in 1983 he became active in the R&D for the SSC, and on the program advisory committee for the SSC Laboratory when it began in Texas in 1988.[21]

Retirement years[edit]

Jackson retired from teaching in May 1995, but retained his connection with LBNL. In the 1990s and beyond his time was increasingly devoted to semi-historical talks and publications on a variety of topics, with a foray into refuting suggestions that cancer may be caused by environmental radiation stemming from ubiquitous electronics use.[22] This includes a continuing series of papers in the American Journal of Physics on diverse topics in electromagnetism, including rebuttals of mistaken ideas. History of physics publications include the historical roots of gauge invariance,[23] examples of the misattribution of discoveries in physics,[24] and the editing of a sequel to R. T. Birge's history of the Berkeley Physics Department.[25]

Students[edit]

His students include Hubert Reeves[13] Gordon L. Kane,[26] Robert N. Cahn (LBNL),[27] Richard D. Field and Chris Quigg.[28]

Memberships and honors[edit]

Jackson was a Fellow of the American Physical Society (elected in 1961),[29] a Member of the American Academy of Arts and Sciences, and a Member of the National Academy of Sciences (elected in 1990).[3] In 1956, he was awarded a Guggenheim Fellowship.[30] In 1989, he received an Honorary D. Sc. from his alma mater, the University of Western Ontario.[31] In 2009, in recognition of his own contributions to classroom teaching and his textbook, the American Association of Physics Teachers created the "J. D. Jackson Award for Excellence in Graduate Education", with the first award in February 2010 to Eugene D. Commins.[32]

Books[edit]

See also[edit]

Notes[edit]

  1. ^ Reissue of the 1962 textbook published by WA Benjamin.
  2. ^ Published posthumously.

References[edit]

  1. ^ Jump up to: a b c d e f g h i j Cahn, Robert N. (21 September 2021). "J. David Jackson (January 19, 1925 – May 20, 2016): A Biographical Memoir". Annual Review of Nuclear and Particle Science. 71 (1): 23–36. Bibcode:2021ARNPS..71...23C. doi:10.1146/annurev-nucl-021621-035759. ISSN 0163-8998. S2CID 239067925.
  2. ^ John Jackson. "John Jackson Obituary – Lansing, MI | Lansing State Journal". Legacy.com. Retrieved 2019-06-22.
  3. ^ Jump up to: a b "J. David Jackson". National Academy of Sciences.
  4. ^ Jump up to: a b Jackson, J. D. (1998) [1962]. Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. ISBN 978-0-471-30932-1. OCLC 535998.
  5. ^ Saslow, Wayne M. (1999). "Book review: Classical electrodynamics, by John David Jackson". Foundations of Physics. 29 (1): 133–135. Bibcode:1999FoPh...29..133S. doi:10.1023/a:1018821305089.
  6. ^ Jump up to: a b c Quigg, Chris (October 2016). "John David Jackson". Physics Today. 69 (10): 68. Bibcode:2016PhT....69j..68Q. doi:10.1063/pt.3.3338.
  7. ^ Jackson, J. D.; Blatt, J. M. (1950). "The interpretation of low energy proton–proton scattering". Reviews of Modern Physics. 22 (1): 77–118. Bibcode:1950RvMP...22...77J. doi:10.1103/RevModPhys.22.77.
  8. ^ Jackson, J. D.; Treiman, S. B.; Wyld, H. W. (1957). "Possible tests of time reversal invariance in beta decay". Physical Review. 106 (3): 517–521. Bibcode:1957PhRv..106..517J. doi:10.1103/PhysRev.106.517.
  9. ^ Jackson, J. D.; Treiman, S. B.; Wyld, H. W. (1957). "Coulomb corrections in allowed beta transitions". Nuclear Physics. 4: 206–212. Bibcode:1957NucPh...4..206J. doi:10.1016/0029-5582(87)90019-8.
  10. ^ Alvarez, L. W.; Crawford, F.; et al. (1957). "Catalysis of nuclear reactions by µ-mesons". Physical Review. 105 (3): 1127–1128. Bibcode:1957PhRv..105.1127A. doi:10.1103/PhysRev.105.1127. S2CID 123886206.
  11. ^ Jackson, J. D. (1957). "Catalysis of nuclear reactions between hydrogen isotopes by negative mu-mesons". Physical Review. 106 (2): 330–339. Bibcode:1957PhRv..106..330J. doi:10.1103/PhysRev.106.330.
  12. ^ Campbell, Allan; Stahl, Franklin W. (December 1998). "Alfred D. Hershey". Annual Review of Genetics. 32 (1): 1–6. doi:10.1146/annurev.genet.32.1.1. ISSN 0066-4197. PMID 9928472.
  13. ^ Jump up to: a b Cahn, Robert N. (2017). "J. David Jackson 1925–2016" (PDF). Biographical Memoirs of the National Academy of Sciences. 2017: 1. Bibcode:2017BMNAS2017....1C.
  14. ^ Gottfried, K.; Jackson, J. D. (1964). "On the connection between production mechanism and decay of resonances at high energy". Nuovo Cimento. 33 (2): 309–330. Bibcode:1964NCim...33..309G. doi:10.1007/BF02750195. S2CID 121279157.
  15. ^ Gottfried, K.; Jackson, J. D. (1964). "Influence of absorption due to competing processes on peripheral reactions". Nuovo Cimento. 34 (3): 735–752. Bibcode:1964NCim...34..735G. doi:10.1007/BF02750013. S2CID 35362627.
  16. ^ Jump up to: a b c d Jackson, J. David (December 1999). "Snapshots of a Physicist's Life". Annual Review of Nuclear and Particle Science. 49 (1): 1–33. Bibcode:1999ARNPS..49....1J. doi:10.1146/annurev.nucl.49.1.1. ISSN 0163-8998.
  17. ^ Jackson, J. D. (1958). The Physics of Elementary Particles. Princeton University Press. LCCN 58013935. OCLC 536207.
  18. ^ Jackson, Ian (2016). Mathein Pathein: a thesaurus of the idiolect of John David Jackson (1925–2016). Berkeley: Ian Jackson Books.
  19. ^ Jackson, J. D. (2023). Cahn, Robert N. (ed.). J. David Jackson: A Course in Quantum Mechanics. New York: John Wiley & Sons. ISBN 978-1-119-88038-7.
  20. ^ Jackson, J. D. (August 18, 1976). "Lectures on the new particles" (PDF). SLAC Report. 198: 147–202. Bibcode:1976slac.conf....2. LBL-5500
  21. ^ "CURRICULUM VITAE JOHN DAVID JACKSON" (PDF). Lawrence Berkeley National Laboratory (LBNL). Retrieved 25 May 2023.
  22. ^ Jackson, J. D. (1992). "Are stray 60 Hz electromagnetic fields associated with the distribution and use of electric power a significant cause of cancer?". Proceedings of the National Academy of Sciences. 89 (8): 3508–3510. Bibcode:1992PNAS...89.3508J. doi:10.1073/pnas.89.8.3508. PMC 48897. PMID 1565645.
  23. ^ Jackson, J. D.; Okun, L. B. (2001). "Historical roots of gauge invariance". Reviews of Modern Physics. 73 (3): 663–680. arXiv:hep-ph/0012061. Bibcode:2001RvMP...73..663J. doi:10.1103/RevModPhys.73.663. S2CID 8285663.
  24. ^ Jackson, J. D. (2008). "Examples of the zeroth theorem of the history of science". American Journal of Physics. 76 (8): 704–719. arXiv:0708.4249. Bibcode:2008AmJPh..76..704J. doi:10.1119/1.2904468. S2CID 117774134.
  25. ^ Helmholz, A. C. (2004). Jackson, J. D. (ed.). History of the Physics Department, University of California, Berkeley, 1950–1968. University of California, Berkeley, Department of Physics. Contains more recent information in appendices.
  26. ^ "Gordon L. Kane". American Institute of Physics. 16 March 2022. Retrieved 25 May 2023.
  27. ^ "Robert Cahn". American Institute of Physics. 22 January 2022. Retrieved 25 May 2023.
  28. ^ "Physics Tree – J. David Jackson". academictree.org. Retrieved 25 May 2023.
  29. ^ "APS Fellow Archive".
  30. ^ "John David Jackson". John Simon Guggenheim Memorial Foundation. Archived from the original on 2013-09-03.
  31. ^ "In memoriam: John David Jackson". University of Western Ontario. Retrieved 25 May 2023.
  32. ^ "J.D. Jackson Excellence in Graduate Education Award - AAPT.org". American Association of Physics Teachers. Retrieved 25 May 2023.

Further reading[edit]

External links[edit]