From Wikipedia, the free encyclopedia
In mathematics, a biorthogonal system is a pair of indexed families of vectors

such that

where

and

form a pair of
topological vector spaces that are in
duality,

is a
bilinear mapping and

is the
Kronecker delta.
An example is the pair of sets of respectively left and right eigenvectors of a matrix, indexed by eigenvalue, if the eigenvalues are distinct.[1]
A biorthogonal system in which
and
is an orthonormal system.
Projection[edit]
Related to a biorthogonal system is the projection

where

its image is the
linear span of

and the
kernel is
Construction[edit]
Given a possibly non-orthogonal set of vectors
and
the projection related is

where

is the matrix with entries
and
then is a biorthogonal system.
See also[edit]
References[edit]
- Jean Dieudonné, On biorthogonal systems Michigan Math. J. 2 (1953), no. 1, 7–20 [1]
|
---|
Basic concepts | |
---|
Topologies | |
---|
Main results | |
---|
Maps | |
---|
Subsets | |
---|
Other concepts | |
---|
|
---|
Spaces | |
---|
Theorems | |
---|
Operators | |
---|
Algebras | |
---|
Open problems | |
---|
Applications | |
---|
Advanced topics | |
---|
|