Jump to content

Солнечное затмение

Страница полузащищена
Послушайте эту статью

Полное солнечное затмение
Полное солнечное затмение происходит, когда Луна полностью закрывает диск Солнца. Вдоль лимба можно увидеть солнечные протуберанцы (красные), а также в значительной степени корональные и частично излучающие корональные стримеры . ( 11 августа 1999 г. )
Annular solar eclipse
An annular solar eclipse occurs when the Moon is too far away to completely cover the Sun's disk (October 14, 2023).
Partial solar eclipse
During a partial solar eclipse, the Moon blocks only part of the Sun's disk (October 25, 2022).

происходит Солнечное затмение , когда Луна проходит между Землей и Солнцем , тем самым полностью или частично закрывая вид на Солнце с небольшой части Земли. Такое выравнивание происходит примерно каждые шесть месяцев, во время сезона затмений в фазе новолуния , когда плоскость орбиты Луны находится ближе всего к плоскости орбиты Земли . [1] Во время полного затмения диск Солнца полностью закрывается Луной. При частичных и кольцевых затмениях закрывается только часть Солнца. В отличие от лунного затмения , которое можно наблюдать из любой точки ночной стороны Земли, солнечное затмение можно наблюдать только с относительно небольшой территории земного шара. Таким образом, хотя полные солнечные затмения происходят где-то на Земле в среднем каждые 18 месяцев, в каждом конкретном месте они повторяются только раз в 360–410 лет.

If the Moon were in a perfectly circular orbit and in the same orbital plane as Earth, there would be total solar eclipses once a month, at every new moon. Instead, because the Moon's orbit is tilted at about 5 degrees to Earth's orbit, its shadow usually misses Earth. Solar (and lunar) eclipses therefore happen only during eclipse seasons, resulting in at least two, and up to five, solar eclipses each year, no more than two of which can be total.[2][3] Полные затмения случаются реже, потому что они требуют более точного выравнивания центров Солнца и Луны , Луны а также потому, что видимый размер на небе иногда слишком мал, чтобы полностью закрыть Солнце.

An eclipse is a natural phenomenon. In some ancient and modern cultures, solar eclipses were attributed to supernatural causes or regarded as bad omens. Astronomers' predictions of eclipses began in China as early as the 4th century BC; eclipses hundreds of years into the future may now be predicted with high accuracy.

Looking directly at the Sun can lead to permanent eye damage, so special eye protection or indirect viewing techniques are used when viewing a solar eclipse. Only the total phase of a total solar eclipse is safe to view without protection. Enthusiasts known as eclipse chasers or umbraphiles travel to remote locations to see solar eclipses.[4][5]

Types

Ten Minute Time Lapse Video of the Total Solar Eclipse on April 8, 2024, in Mazatlán, Mexico.
Partial and annular phases of the solar eclipse of May 20, 2012

The Sun's distance from Earth is about 400 times the Moon's distance, and the Sun's diameter is about 400 times the Moon's diameter. Because these ratios are approximately the same, the Sun and the Moon as seen from Earth appear to be approximately the same size: about 0.5 degree of arc in angular measure.[6]

The Moon's orbit around Earth is slightly elliptical, as is Earth's orbit around the Sun. The apparent sizes of the Sun and Moon therefore vary.[7] The magnitude of an eclipse is the ratio of the apparent size of the Moon to the apparent size of the Sun during an eclipse. An eclipse that occurs when the Moon is near its closest distance to Earth (i.e., near its perigee) can be a total eclipse because the Moon will appear to be large enough to completely cover the Sun's bright disk or photosphere; a total eclipse has a magnitude greater than or equal to 1.000. Conversely, an eclipse that occurs when the Moon is near its farthest distance from Earth (i.e., near its apogee) can be only an annular eclipse because the Moon will appear to be slightly smaller than the Sun; the magnitude of an annular eclipse is less than 1.[8]

Because Earth's orbit around the Sun is also elliptical, Earth's distance from the Sun similarly varies throughout the year. This affects the apparent size of the Sun in the same way, but not as much as does the Moon's varying distance from Earth.[6] When Earth approaches its farthest distance from the Sun in early July, a total eclipse is somewhat more likely, whereas conditions favour an annular eclipse when Earth approaches its closest distance to the Sun in early January.[9]

There are three main types of solar eclipses:[10]

Total eclipse

A total eclipse occurs on average every 18 months[11] when the dark silhouette of the Moon completely obscures the bright light of the Sun, allowing the much fainter solar corona to be visible. During an eclipse, totality occurs only along a narrow track on the surface of Earth.[12] This narrow track is called the path of totality.[13]

Annular eclipse

An annular eclipse, like a total eclipse, occurs when the Sun and Moon are exactly in line with Earth. During an annular eclipse, however, the apparent size of the Moon is not large enough to completely block out the Sun.[6] Totality thus does not occur; the Sun instead appears as a very bright ring, or annulus, surrounding the dark disk of the Moon.[6] Annular eclipses occur once every one or two years, not annually.[11][14] Their name comes from the Latin root word anulus, meaning "ring", rather than annus, for "year".[14]

Partial eclipse

A partial eclipse occurs about twice a year,[11] when the Sun and Moon are not exactly in line with Earth and the Moon only partially obscures the Sun. This phenomenon can usually be seen from a large part of Earth outside of the track of an annular or total eclipse. However, some eclipses can be seen only as a partial eclipse, because the umbra passes above Earth's polar regions and never intersects Earth's surface.[6] Partial eclipses are virtually unnoticeable in terms of the Sun's brightness, as it takes well over 90% coverage to notice any darkening at all. Even at 99%, it would be no darker than civil twilight.[15]

Comparison of minimum and maximum apparent sizes of the Sun and Moon (and planets). An annular eclipse can occur when the Sun has a larger apparent size than the Moon, whereas a total eclipse can occur when the Moon has a larger apparent size.

Terminology

Hybrid eclipse

A hybrid eclipse (also called annular/total eclipse) shifts between a total and annular eclipse. At certain points on the surface of Earth, it appears as a total eclipse, whereas at other points it appears as annular. Hybrid eclipses are comparatively rare.[6]

A hybrid eclipse occurs when the magnitude of an eclipse changes during the event from less to greater than one, so the eclipse appears to be total at locations nearer the midpoint, and annular at other locations nearer the beginning and end, since the sides of Earth are slightly further away from the Moon. These eclipses are extremely narrow in their path width and relatively short in their duration at any point compared with fully total eclipses; the 2023 April 20 hybrid eclipse's totality is over a minute in duration at various points along the path of totality. Like a focal point, the width and duration of totality and annularity are near zero at the points where the changes between the two occur.[16]

Central eclipse

Each icon shows the view from the centre of its black spot, representing the Moon (not to scale)
Diamond ring effect at third contact—the end of totality—with visible prominences (August 21, 2017)

Central eclipse is often used as a generic term for a total, annular, or hybrid eclipse.[17] This is, however, not completely correct: the definition of a central eclipse is an eclipse during which the central line of the umbra touches Earth's surface. It is possible, though extremely rare, that part of the umbra intersects with Earth (thus creating an annular or total eclipse), but not its central line. This is then called a non-central total or annular eclipse.[17] Gamma is a measure of how centrally the shadow strikes. The last (umbral yet) non-central solar eclipse was on April 29, 2014. This was an annular eclipse. The next non-central total solar eclipse will be on April 9, 2043.[18]

Eclipse phases

The visual phases observed during a total eclipse are called:[19]

  • First contact—when the Moon's limb (edge) is exactly tangential to the Sun's limb.
  • Second contact—starting with Baily's Beads (caused by light shining through valleys on the Moon's surface) and the diamond ring effect. Almost the entire disk is covered.
  • Totality—the Moon obscures the entire disk of the Sun and only the solar corona is visible.
  • Third contact—when the first bright light becomes visible and the Moon's shadow is moving away from the observer. Again a diamond ring may be observed.
  • Fourth contact—when the trailing edge of the Moon ceases to overlap with the solar disk and the eclipse ends.

Predictions

Geometry

Geometry of a total solar eclipse (not to scale)

The diagrams to the right show the alignment of the Sun, Moon, and Earth during a solar eclipse. The dark gray region between the Moon and Earth is the umbra, where the Sun is completely obscured by the Moon. The small area where the umbra touches Earth's surface is where a total eclipse can be seen. The larger light gray area is the penumbra, in which a partial eclipse can be seen. An observer in the antumbra, the area of shadow beyond the umbra, will see an annular eclipse.[20]

The Moon's orbit around Earth is inclined at an angle of just over 5 degrees to the plane of Earth's orbit around the Sun (the ecliptic). Because of this, at the time of a new moon, the Moon will usually pass to the north or south of the Sun. A solar eclipse can occur only when a new moon occurs close to one of the points (known as nodes) where the Moon's orbit crosses the ecliptic.[21]

As noted above, the Moon's orbit is also elliptical. The Moon's distance from Earth varies by up to about 5.9% from its average value. Therefore, the Moon's apparent size varies with its distance from Earth, and it is this effect that leads to the difference between total and annular eclipses. The distance of Earth from the Sun also varies during the year, but this is a smaller effect (by up to about 0.85% from its average value). On average, the Moon appears to be slightly (2.1%) smaller than the Sun as seen from Earth, so the majority (about 60%) of central eclipses are annular. It is only when the Moon is closer to Earth than average (near its perigee) that a total eclipse occurs.[22][23]

MoonSun
At perigee
(nearest)
At apogee
(farthest)
At perihelion
(nearest)
At aphelion
(farthest)
Mean radius1737.10 km
(1079.38 mi)
696000 km
(432000 mi)
Distance363104 km
(225622 mi)
405696 km
(252088 mi)
147098070 km
(91402500 mi)
152097700 km
(94509100 mi)
Angular
diameter[24]
33' 30"
(0.5583°)
29' 26"
(0.4905°)
32' 42"
(0.5450°)
31' 36"
(0.5267°)
Apparent size
to scale
Order by
decreasing
apparent size
1st4th2nd3rd

The Moon orbits Earth in approximately 27.3 days, relative to a fixed frame of reference. This is known as the sidereal month. However, during one sidereal month, Earth has revolved part way around the Sun, making the average time between one new moon and the next longer than the sidereal month: it is approximately 29.5 days. This is known as the synodic month and corresponds to what is commonly called the lunar month.[21]

The Moon crosses from south to north of the ecliptic at its ascending node, and vice versa at its descending node.[21] However, the nodes of the Moon's orbit are gradually moving in a retrograde motion, due to the action of the Sun's gravity on the Moon's motion, and they make a complete circuit every 18.6 years. This regression means that the time between each passage of the Moon through the ascending node is slightly shorter than the sidereal month. This period is called the nodical or draconic month.[25]

Finally, the Moon's perigee is moving forwards or precessing in its orbit and makes a complete circuit in 8.85 years. The time between one perigee and the next is slightly longer than the sidereal month and known as the anomalistic month.[26]

The Moon's orbit intersects with the ecliptic at the two nodes that are 180 degrees apart. Therefore, the new moon occurs close to the nodes at two periods of the year approximately six months (173.3 days) apart, known as eclipse seasons, and there will always be at least one solar eclipse during these periods. Sometimes the new moon occurs close enough to a node during two consecutive months to eclipse the Sun on both occasions in two partial eclipses. This means that, in any given year, there will always be at least two solar eclipses, and there can be as many as five.[27]

Eclipses can occur only when the Sun is within about 15 to 18 degrees of a node, (10 to 12 degrees for central eclipses). This is referred to as an eclipse limit, and is given in ranges because the apparent sizes and speeds of the Sun and Moon vary throughout the year. In the time it takes for the Moon to return to a node (draconic month), the apparent position of the Sun has moved about 29 degrees, relative to the nodes.[2] Since the eclipse limit creates a window of opportunity of up to 36 degrees (24 degrees for central eclipses), it is possible for partial eclipses (or rarely a partial and a central eclipse) to occur in consecutive months.[28][29]

Fraction of the Sun's disc covered, f, when the same-sized discs are offset a fraction t of their diameter.[30]

Path

From space, the Moon's shadow during the solar eclipse of March 9, 2016 appears as a dark spot moving across Earth.

During a central eclipse, the Moon's umbra (or antumbra, in the case of an annular eclipse) moves rapidly from west to east across Earth. Earth is also rotating from west to east, at about 28 km/min at the Equator, but as the Moon is moving in the same direction as Earth's rotation at about 61 km/min, the umbra almost always appears to move in a roughly west–east direction across a map of Earth at the speed of the Moon's orbital velocity minus Earth's rotational velocity.[31]

The width of the track of a central eclipse varies according to the relative apparent diameters of the Sun and Moon. In the most favourable circumstances, when a total eclipse occurs very close to perigee, the track can be up to 267 km (166 mi) wide and the duration of totality may be over 7 minutes.[32] Outside of the central track, a partial eclipse is seen over a much larger area of Earth. Typically, the umbra is 100–160 km wide, while the penumbral diameter is in excess of 6400 km.[33]

Besselian elements are used to predict whether an eclipse will be partial, annular, or total (or annular/total), and what the eclipse circumstances will be at any given location.[34]: Chapter 11 

Calculations with Besselian elements can determine the exact shape of the umbra's shadow on Earth's surface. But at what longitudes on Earth's surface the shadow will fall, is a function of Earth's rotation, and on how much that rotation has slowed down over time. A number called ΔT is used in eclipse prediction to take this slowing into account. As Earth slows, ΔT increases. ΔT for dates in the future can only be roughly estimated because Earth's rotation is slowing irregularly. This means that, although it is possible to predict that there will be a total eclipse on a certain date in the far future, it is not possible to predict in the far future exactly at what longitudes that eclipse will be total. Historical records of eclipses allow estimates of past values of ΔT and so of Earth's rotation.[34]: Equation 11.132 

Duration

The following factors determine the duration of a total solar eclipse (in order of decreasing importance):[35][36]

  1. The Moon being almost exactly at perigee (making its angular diameter as large as possible).
  2. Earth being very near aphelion (furthest away from the Sun in its elliptical orbit, making its angular diameter nearly as small as possible).
  3. The midpoint of the eclipse being very close to Earth's equator, where the rotational velocity is greatest and is closest to the speed of the lunar shadow moving over Earth's surface.
  4. The vector of the eclipse path at the midpoint of the eclipse aligning with the vector of Earth's rotation (i.e. not diagonal but due east).
  5. The midpoint of the eclipse being near the subsolar point (the part of Earth closest to the Sun).

The longest eclipse that has been calculated thus far is the eclipse of July 16, 2186 (with a maximum duration of 7 minutes 29 seconds over northern Guyana).[35]

Occurrence and cycles

As Earth revolves around the Sun, approximate axial parallelism of the Moon's orbital plane (tilted five degrees to Earth's orbital plane) results in the revolution of the lunar nodes relative to Earth. This causes an eclipse season approximately every six months, in which a solar eclipse can occur at the new moon phase and a lunar eclipse can occur at the full moon phase.
Total solar eclipse paths: 1001–2000, showing that total solar eclipses occur almost everywhere on Earth. This image was merged from 50 separate images from NASA.[37]

A total solar eclipse is a rare event, recurring somewhere on Earth every 18 months on average,[38] yet is estimated to recur at any given location only every 360–410 years on average.[39] The total eclipse lasts for only a maximum of a few minutes at any location because the Moon's umbra moves eastward at over 1700 km/h (1100 mph; 470 m/s; 1500 ft/s).[40] Totality currently can never last more than 7 min 32 s. This value changes over the millennia and is currently decreasing. By the 8th millennium, the longest theoretically possible total eclipse will be less than 7 min 2 s.[35] The last time an eclipse longer than 7 minutes occurred was June 30, 1973 (7 min 3 sec). Observers aboard a Concorde supersonic aircraft were able to stretch totality for this eclipse to about 74 minutes by flying along the path of the Moon's umbra.[41] The next total eclipse exceeding seven minutes in duration will not occur until June 25, 2150. The longest total solar eclipse during the 11000 year period from 3000 BC to at least 8000 AD will occur on July 16, 2186, when totality will last 7 min 29 s.[35][42] For comparison, the longest total eclipse of the 20th century at 7 min 8 s occurred on June 20, 1955, and there will be no total solar eclipses over 7 min in duration in the 21st century.[43]

It is possible to predict other eclipses using eclipse cycles. The saros is probably the best known and one of the most accurate. A saros lasts 6585.3 days (a little over 18 years), which means that, after this period, a practically identical eclipse will occur. The most notable difference will be a westward shift of about 120° in longitude (due to the 0.3 days) and a little in latitude (north-south for odd-numbered cycles, the reverse for even-numbered ones). A saros series always starts with a partial eclipse near one of Earth's polar regions, then shifts over the globe through a series of annular or total eclipses, and ends with a partial eclipse at the opposite polar region. A saros series lasts 1226 to 1550 years and 69 to 87 eclipses, with about 40 to 60 of them being central.[44]

Frequency per year

Between two and five solar eclipses occur every year, with at least one per eclipse season. Since the Gregorian calendar was instituted in 1582, years that have had five solar eclipses were 1693, 1758, 1805, 1823, 1870, and 1935. The next occurrence will be 2206.[45] On average, there are about 240 solar eclipses each century.[46]

The five solar eclipses of 1935
January 5February 3June 30July 30December 25
Partial
(south)
Partial
(north)
Partial
(north)
Partial
(south)
Annular
(south)

Saros 111

Saros 149

Saros 116

Saros 154

Saros 121

Final totality

Полные солнечные затмения наблюдаются на Земле из-за случайного стечения обстоятельств. Даже на Земле привычное сегодня людям разнообразие затмений является временным (в геологических масштабах времени) явлением. Сотни миллионов лет назад Луна была ближе к Земле и, следовательно, казалась больше, поэтому каждое солнечное затмение было полным или частичным, а кольцевых затмений не было. Из-за приливного ускорения орбита Луны вокруг Земли каждый год отдаляется примерно на 3,8 см. Через миллионы лет Луна будет слишком далеко, чтобы полностью закрыть Солнце, и полных затмений не произойдет. В тот же период Солнце может стать ярче, что заставит его казаться больше в размерах. [47] Оценки времени, когда Луна не сможет закрыть все Солнце, если смотреть с Земли, колеблются в пределах 650 миллионов. [48] и через 1,4 миллиарда лет в будущем. [47]

Просмотр

Полное солнечное затмение 2017 года, просмотр в реальном времени с реакцией аудитории

Взгляд прямо на фотосферу Солнца (яркий диск самого Солнца) даже в течение нескольких секунд может привести к необратимому глаза из повреждению сетчатки -за интенсивного видимого и невидимого излучения, излучаемого фотосферой. Это повреждение может привести к ухудшению зрения, вплоть до слепоты . Сетчатка не чувствительна к боли, и последствия повреждения сетчатки могут не проявиться в течение нескольких часов, поэтому нет никаких предупреждений о том, что происходит травма. [49] [50]

В обычных условиях Солнце настолько яркое, что на него трудно смотреть прямо. Однако во время затмения, когда большая часть Солнца закрыта, смотреть на него легче и заманчивее. Смотреть на Солнце во время затмения так же опасно, как смотреть на него вне затмения, за исключением короткого периода полного затмения, когда диск Солнца полностью закрыт (полнота происходит только во время полного затмения и только очень кратковременно; его не происходит во время частичного или кольцевого затмения). Просмотр диска Солнца через любой оптический прибор (бинокль, телескоп или даже видоискатель оптической камеры) чрезвычайно опасен и может привести к необратимому повреждению глаз в течение доли секунды. [51] [52]

Частичные и кольцевые затмения

Очки затмения отфильтровывают вредное для глаз излучение, позволяя напрямую видеть Солнце во время всех фаз частичного затмения; они не используются во время тотальности, когда Солнце полностью затмевается.
Метод проекции обскуры для наблюдения частичного солнечного затмения. Вставка (вверху слева): частично затменное Солнце, сфотографированное с помощью белого солнечного фильтра. Основное изображение: проекции частично затменного Солнца (внизу справа)

Наблюдение за Солнцем во время частичных и кольцевых затмений (а также во время полных затмений за пределами короткого периода полного) требует специальной защиты глаз или непрямых методов наблюдения, чтобы избежать повреждения глаз. Диск Солнца можно рассмотреть, используя соответствующую фильтрацию, блокирующую вредную часть солнечного излучения. Солнцезащитные очки не делают наблюдение за Солнцем безопасным. Для прямого просмотра солнечного диска следует использовать только правильно спроектированные и сертифицированные солнечные фильтры. [53] самодельных фильтров, в которых используются обычные предметы, такие как дискета, извлеченная из коробки, компакт-диск , слайд-пленка черного цвета, дымчатое стекло и т. д. В частности, следует избегать [54] [55]

Самый безопасный способ увидеть диск Солнца — непрямая проекция. [56] Это можно сделать, спроецировав изображение диска на белый лист бумаги или картона с помощью бинокля (с закрытой одной из линз), телескопа или другого куска картона с небольшим отверстием (около 1 дюйма). мм диаметром), часто называемый камерой-обскурой . После этого проецируемое изображение Солнца можно будет безопасно просматривать; эту технику можно использовать для наблюдения солнечных пятен , а также затмений. Однако необходимо соблюдать осторожность, чтобы никто не смотрел прямо через проектор (телескоп, точечное отверстие и т. д.). [57] Кухонный дуршлаг с небольшими отверстиями также можно использовать для проецирования нескольких изображений частично затменного Солнца на землю или экран просмотра. Просмотр диска Солнца на экране видеодисплея (с помощью видеокамеры или цифровой камеры ) безопасен, хотя сама камера может быть повреждена прямым воздействием Солнца. Оптические видоискатели некоторых видео- и цифровых камер небезопасны. Надежное крепление сварочного стекла № 14 перед объективом и видоискателем защищает оборудование и делает возможным просмотр. [55] Профессиональное мастерство имеет важное значение, поскольку любые зазоры или отсоединение креплений могут привести к тяжелым последствиям. На пути частичного затмения нельзя будет увидеть корону или почти полное затемнение неба. Однако в зависимости от того, какая часть солнечного диска скрыта, некоторое затемнение может быть заметным. Если затенено три четверти или более Солнца, то можно наблюдать эффект, при котором дневной свет кажется тусклым, как если бы небо было затянуто тучами, однако предметы все равно отбрасывают резкие тени. [58]

Тотальность

Бусы Бейли , солнечный свет, видимый сквозь лунные долины
Составное изображение с эффектом короны , выступов и бриллиантового кольца.

Когда сжимающаяся видимая часть фотосферы станет очень маленькой, бусинки Бейли возникнут . Это вызвано тем, что солнечный свет все еще может достигать Земли через лунные долины. Затем целостность начинается с эффекта бриллиантового кольца , последней яркой вспышки солнечного света. [59]

Непосредственно полную фазу солнечного затмения безопасно наблюдать только тогда, когда фотосфера Солнца полностью закрыта Луной, а не до или после полного затмения. [56] В этот период Солнце слишком тусклое, чтобы его можно было увидеть через фильтры. Солнца Будет видна слабая корона , а также хромосфера , солнечные протуберанцы , корональные стримеры и, возможно, даже солнечная вспышка . В конце тотальности те же самые эффекты произойдут в обратном порядке и на противоположной стороне Луны. [59]

Погоня за затмением

Специальная группа охотников за затмениями занимается наблюдением солнечных затмений, когда они происходят вокруг Земли. [60] Человек, который гонится за затмениями, известен как умбрафил, что означает любитель теней. [61] Умбрафилы путешествуют во время затмений и используют различные инструменты, чтобы наблюдать за Солнцем, в том числе солнечные очки для наблюдения , также известные как очки для затмения, а также телескопы. [62] [63]

Фотография

Развитие солнечного затмения 1 августа 2008 года в Новосибирске , Россия . Все время UTC (местное время UTC+7). Промежуток времени между кадрами составляет три минуты.

Первая известная фотография солнечного затмения была сделана 28 июля 1851 года Иоганном Юлиусом Фридрихом Берковским с использованием процесса дагерротипирования . [64] [65]

Сфотографировать затмение можно с помощью довольно распространенной фототехники. Для того чтобы диск Солнца/Луны был хорошо виден, необходим длиннофокусный объектив с достаточно большим увеличением (не менее 200 мм для 35-мм фотоаппарата), а чтобы диск занимал большую часть кадра, — более длинный объектив. (более 500 мм). Как и при прямом наблюдении Солнца, просмотр его через оптический видоискатель камеры может привести к повреждению сетчатки, поэтому рекомендуется соблюдать осторожность. [66] Солнечные фильтры необходимы для цифровой фотографии, даже если оптический видоискатель не используется. Использование функции просмотра в реальном времени камеры или электронного видоискателя безопасно для человеческого глаза, но солнечные лучи потенциально могут нанести непоправимый ущерб цифровым датчикам изображения, если объектив не закрыт правильно спроектированным солнечным фильтром. [67]

Дыры в тенях во время отсутствия затмения (1 и 4), частичного затмения (2 и 5) и кольцевого затмения (3 и 6)
Тени-обскуры во время солнечного затмения 8 апреля 2024 года, вид из Виндера, штат Джорджия.

Исторические затмения

Астрономы, изучающие затмение , Антуан Карон , 1571 г.

Исторические затмения являются очень ценным ресурсом для историков, поскольку они позволяют точно датировать некоторые исторические события, на основе чего можно вывести другие даты и древние календари. [68] Самое старое зарегистрированное солнечное затмение было записано на глиняной табличке, найденной в Угарите , в современной Сирии , при этом обычно указываются две правдоподобные даты: 3 мая 1375 г. до н. э. или 5 марта 1223 г. до н. э., последняя из которых отдается предпочтение последним авторам по этой теме. [69] [70] Солнечное затмение 15 июня 763 г. до н. э., упомянутое в ассирийском тексте, имеет важное значение для хронологии древнего Ближнего Востока . [71] Были и другие утверждения о датировке более ранних затмений. Легендарный китайский король Чжун Кан предположительно обезглавил двух астрономов, Си и Хо, которые не смогли предсказать затмение 4000 лет назад. [72] Возможно, самым ранним, еще не доказанным утверждением является утверждение археолога Брюса Масса, который предположительно связывает затмение, произошедшее 10 мая 2807 года до нашей эры, с возможным падением метеорита в Индийском океане на основе нескольких древних мифов о потопе , в которых упоминается полное солнечное затмение. затмение. [73]

Записи солнечных затмений 993 и 1004 годов, а также лунных затмений 1001 и 1002 годов, сделанные Ибн Юнусом из Каира (ок. 1005 г.).

Затмения интерпретировались как предзнаменования или предзнаменования. [74] Древнегреческий историк Геродот писал, что Фалес Милетский предсказал затмение, произошедшее во время битвы между мидянами и лидийцами . Обе стороны сложили оружие и объявили мир в результате затмения. [75] Точное время затмения остается неясным, хотя этот вопрос изучали сотни древних и современных ученых. Один из вероятных кандидатов состоялся 28 мая 585 года до нашей эры, вероятно, недалеко от реки Халис в Малой Азии . [76] Затмение, записанное Геродотом перед отъездом Ксеркса в поход против Греции . [77] сопоставил которое традиционно датируется 480 г. до н.э., Джон Рассел Хинд с кольцевым затмением Солнца в Сардисе 17 февраля 478 г. до н.э. [78] Альтернативно, частичное затмение было видно из Персии 2 октября 480 г. до н. э. [79] Геродот также сообщает о солнечном затмении в Спарте во время Второго персидского вторжения в Грецию . [80] Дата затмения (1 августа 477 г. до н.э.) не совсем соответствует общепринятым датам вторжения, принятым историками. [81]

В древнем Китае, где солнечные затмения были известны как «поедание Солнца» ( rìshí 日食 ), самые ранние записи о затмениях датируются примерно 720 годом до нашей эры. [82] Астроном 4-го века до нашей эры Ши Шен описал предсказание затмений, используя относительное положение Луны и Солнца. [83]

Были предприняты попытки установить точную дату Страстной пятницы , предполагая, что тьма, описанная при распятии Иисуса, была солнечным затмением. Это исследование не дало убедительных результатов, [84] [85] а Страстная пятница отмечается как Песах , который отмечается во время полнолуния. Кроме того, темнота длилась с шестого часа до девятого, то есть трех часов, что намного дольше, чем верхний восьмиминутный предел для любого полного солнечного затмения. Современные хроники пишут о затмении начала мая 664 года , совпавшем с началом чумы 664 года на Британских островах. [86] В Западном полушарии имеется мало надежных записей о затмениях до 800 г. н. э., вплоть до появления арабских и монашеских наблюдений в период раннего средневековья. [82]

Солнечное затмение произошло 27 января 632 года над Аравией при . жизни Мухаммеда Мухаммед отрицал, что затмение имело какое-либо отношение к смерти его сына ранее в тот же день, говоря: «Солнце и луна не затмеваются из-за смерти кого-то из людей, но это два знамения среди знамений Бога». [87] Каирский астроном Ибн Юнус писал, что расчет затмений был одной из многих вещей, связывающих астрономию с исламским законом , поскольку позволял узнать, когда особую молитву . можно совершить [88] Первое зарегистрированное наблюдение короны было сделано в Константинополе в 968 году нашей эры. [79] [82]

Эрхард Вайгель предсказал ход лунной тени 12 августа 1654 года ( по OS ) 2 августа

Первое известное телескопическое наблюдение полного солнечного затмения было сделано во Франции в 1706 году. [82] Девять лет спустя английский астроном Эдмунд Галлей точно предсказал и наблюдал солнечное затмение 3 мая 1715 года . [79] [82] К середине 19 века научное понимание Солнца улучшилось благодаря наблюдениям солнечной короны во время солнечных затмений. Корона была идентифицирована как часть атмосферы Солнца в 1842 году , а первая фотография (или дагерротип ) полного затмения была сделана во время солнечного затмения 28 июля 1851 года . [79] спектроскопические Были проведены наблюдения солнечного затмения 18 августа 1868 года , которые помогли определить химический состав Солнца. [79]

Джон Фиск суммировал мифы о солнечном затмении в своей книге 1872 года «Миф и создатели мифов» .

миф о Геркулесе и Каке, основная идея – победа солнечного бога над разбойником, похитившим свет. Для создателей мифа не имело бы большого значения, унесет ли грабитель свет вечером, когда Индра заснул, или смело поднимет свое черное тело на фоне неба днем, заставляя тьму распространяться по земле. Для курицы солнечное затмение — то же самое, что наступление ночи, и соответственно он отправляется на ночевку. Почему же тогда первобытный мыслитель должен был проводить различие между затемнением неба, вызванным черными облаками, и затемнением, вызванным вращением Земли? Он имел не большее представление о научном объяснении этих явлений, чем курица о научном объяснении затмения. Ему достаточно было знать, что солнечное сияние и в том, и в другом случае было украдено, и заподозрить, что в обоих ограблениях виноват один и тот же демон. [89]

Частные наблюдения, явления и влияние

Имитация солнечного затмения со все еще освещенным и преломляющимся горизонтом, а также корональными стримерами .

Полное солнечное затмение дает редкую возможность наблюдать корону (внешний слой атмосферы Солнца). Обычно этого не видно, поскольку фотосфера намного ярче короны. В зависимости от точки, достигнутой в солнечном цикле , корона может казаться маленькой и симметричной или большой и размытой. Предсказать это заранее очень сложно. [90]

Явления, связанные с затмениями, включают полосы теней (также известные как летающие тени ), которые похожи на тени на дне бассейна. Они происходят только незадолго до и после полноты, когда узкий солнечный серп действует как анизотропный источник света. [91] Когда свет проникает через листья деревьев во время частичного затмения, перекрывающиеся листья создают естественные отверстия, отображающие мини-затмения на земле. [92]

1919 наблюдений

Оригинальная фотография затмения 1919 года, сделанная Эддингтоном, которая послужила доказательством Эйнштейна общей теории относительности .

Наблюдение полного солнечного затмения 29 мая 1919 года помогло подтвердить Эйнштейна общую теорию относительности . Сравнивая видимое расстояние между звездами в созвездии Тельца с Солнцем между ними и без него, Артур Эддингтон заявил, что теоретические предсказания о гравитационных линзах подтвердились. [93] Наблюдение с Солнцем между звездами было возможно только во время полноты, поскольку тогда звезды видны. Хотя наблюдения Эддингтона в то время были близки к экспериментальным пределам точности, работы во второй половине 20-го века подтвердили его результаты. [94] [95]

Гравитационные аномалии

Существует долгая история наблюдений явлений, связанных с гравитацией, во время солнечных затмений, особенно в период их полного затмения. В 1954 и 1959 годах Морис Алле сообщал о наблюдениях странного и необъяснимого движения во время солнечных затмений. [96] Реальность этого явления, названного эффектом Алле , остается спорной. Точно так же в 1970 году Саксл и Аллен наблюдали внезапное изменение движения крутильного маятника; это явление называется эффектом Саксля. [97]

Наблюдения во время солнечного затмения 1997 года, проведенные Вангом и др. предположил возможный эффект гравитационного экранирования , [98] что вызвало споры. В 2002 году Ван и его соавтор опубликовали подробный анализ данных, который показал, что это явление до сих пор остается необъяснимым. [99]

Затмения и транзиты

В принципе возможно одновременное возникновение солнечного затмения и транзита планеты. Но эти события крайне редки из-за их кратковременности. Следующее ожидаемое одновременное возникновение солнечного затмения и транзита Меркурия произойдет 5 июля 6757 года, а солнечное затмение и транзит Венеры ожидается 5 апреля 15 232 года . [100]

Более распространенным, но все же нечастым является соединение планеты (особенно, но не только Меркурия или Венеры) во время полного солнечного затмения, в этом случае планета будет видна очень близко к затмевающемуся Солнцу, когда нет солнечного затмения. во время затмения оно потерялось бы в ярком свете Солнца. В свое время некоторые ученые выдвинули гипотезу, что может существовать планета (часто называемая Вулкан ) даже ближе к Солнцу, чем Меркурий; единственным способом подтвердить его существование было бы наблюдать его в пути или во время полного солнечного затмения. Ни одна такая планета так и не была найдена, и с тех пор общая теория относительности объяснила наблюдения, которые заставили астрономов предположить, что Вулкан может существовать. [101]

Искусственные спутники

Тень Луны над Турцией и Кипром , вид с МКС во время полного солнечного затмения 2006 года .
Составное изображение, показывающее прохождение Солнца через МКС во время солнечного затмения 2017 года.

Искусственные спутники также могут проходить перед Солнцем, если смотреть с Земли, но ни один из них не достаточно велик, чтобы вызвать затмение. Например, на высоте Международной космической станции объект должен иметь диаметр около 3,35 км (2,08 мили), чтобы полностью заслонить Солнце. Эти транзиты сложно наблюдать, поскольку зона видимости очень мала. Обычно спутник проходит над поверхностью Солнца примерно за секунду. Как и при транзите планеты, темноты не наступит. [102]

Наблюдения затмений с космических аппаратов или искусственных спутников, находящихся на орбите над атмосферой Земли, не зависят от погодных условий. Экипаж «Джемини-12» наблюдал полное солнечное затмение из космоса в 1966 году. [103] Частичная фаза полного затмения 1999 года была видна с Мира . [104]

Влияние

Солнечное затмение 20 марта 2015 года стало первым случаем затмения, которое, по оценкам, потенциально может оказать существенное воздействие на энергосистему, при этом электроэнергетический сектор принял меры для смягчения любого воздействия. По оценкам, синхронные зоны континентальной Европы и Великобритании имеют около 90 гигаватт , солнечной энергии и было подсчитано, что производство временно снизится на 34 ГВт по сравнению с ясным днем ​​неба. [105] [106]

Затмения могут привести к снижению температуры на 3 ° C (5 ° F), при этом мощность ветра потенциально уменьшится, поскольку скорость ветра уменьшается на 0,7 метра (2,3 фута) в секунду. [107]

Помимо падения уровня освещенности и температуры воздуха, животные меняют свое поведение во время тотального периода. Например, птицы и белки возвращаются в свои гнезда, а сверчки щебечут. [108]

Недавние и предстоящие солнечные затмения

Путь затмения для полных и гибридных затмений с 2021 по 2040 год

Затмения происходят только в сезон затмений , когда Солнце находится близко либо к восходящему, либо к нисходящему узлу Луны . Каждое затмение отделено одним, пятью или шестью луниями ( синодическими месяцами ), а середина каждого сезона отделена 173,3 днями, что является средним временем, за которое Солнце перемещается от одного узла к другому. Срок составляет чуть меньше половины календарного года, поскольку лунные узлы медленно регрессируют. Поскольку 223 синодических месяца примерно равны 239 аномалистическим месяцам и 242 драконическим месяцам , затмения с аналогичной геометрией повторяются с интервалом в 223 синодических месяца (около 6585,3 дня). Этот период (18 лет 11,3 дня) является саросом . Поскольку 223 синодических месяца не тождественны 239 аномалистическим месяцам или 242 драконическим месяцам, циклы сароса не повторяются бесконечно. Каждый цикл начинается с того, что тень Луны пересекает Землю возле северного или южного полюса, а последующие события продвигаются к другому полюсу, пока тень Луны не минует Землю, и серия не закончится. [28] Циклы Сароса пронумерованы; в настоящее время активны циклы с 117 по 156. [ нужна ссылка ]

1997–2000

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [109]

Частные солнечные затмения 1 июля 2000 г. и 25 декабря 2000 г. произойдут в рамках серии затмений следующего лунного года.

солнечных затмений Серия с 1997 по 2000 год.
Descending node Ascending node
SarosMapGammaSarosMapGamma
120

Totality in Chita, Russia
March 9, 1997

Total
0.9183125September 2, 1997

Partial
−1.0352
130

Totality near Guadeloupe
February 26, 1998

Total
0.2391135August 22, 1998

Annular
−0.2644
140February 16, 1999

Annular
−0.4726145

Totality in France
August 11, 1999

Total
0.5062
150February 5, 2000

Partial
−1.2233155July 31, 2000

Partial
1.2166

2000–2003

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [110]

Частные солнечные затмения 5 февраля 2000 г. и 31 июля 2000 г. происходят в серии затмений предыдущего лунного года.

солнечных затмений Серия с 2000 по 2003 год.
Ascending node Descending node
SarosMapGammaSarosMapGamma
117July 1, 2000

Partial
−1.28214122

Partial projection in Minneapolis, MN, USA
December 25, 2000

Partial
1.13669
127

Totality in Lusaka, Zambia
June 21, 2001

Total
−0.57013132

Partial in Minneapolis, MN, USA
December 14, 2001

Annular
0.40885
137

Partial in Los Angeles, CA, USA
June 10, 2002

Annular
0.19933142

Totality in Woomera, South Australia
December 4, 2002

Total
−0.30204
147

Annularity in Culloden, Scotland
May 31, 2003

Annular
0.99598152
November 23, 2003

Total
−0.96381

2004–2007

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [111]

солнечных затмений Серия с 2004 по 2007 год.
Ascending node Descending node
SarosMapGammaSarosMapGamma
119April 19, 2004

Partial
−1.13345124October 14, 2004

Partial
1.03481
129

Partial in Naiguatá, Venezuela
April 8, 2005

Hybrid
−0.34733134

Annularity in Madrid, Spain
October 3, 2005

Annular
0.33058
139

Totality in Side, Turkey
March 29, 2006

Total
0.38433144

Partial in São Paulo, Brazil
September 22, 2006

Annular
−0.40624
149

Partial in Jaipur, India
March 19, 2007

Partial
1.07277154

Partial in Córdoba, Argentina
September 11, 2007

Partial
−1.12552

2008–2011

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [112]

Частные солнечные затмения 1 июня 2011 г. и 25 ноября 2011 г. произойдут в рамках серии затмений следующего лунного года.

солнечных затмений Серия с 2008 по 2011 год.
Ascending node Descending node
SarosMapGammaSarosMapGamma
121

Partial in Christchurch, New Zealand
February 7, 2008

Annular
−0.95701126

Totality in Kumul, Xinjiang, China
August 1, 2008

Total
0.83070
131

Annularity in Palangka Raya, Indonesia
January 26, 2009

Annular
−0.28197136

Totality in Kurigram District, Bangladesh
July 22, 2009

Total
0.06977
141

Annularity in Jinan, Shandong, China
January 15, 2010

Annular
0.40016146

Totality in Hao, French Polynesia
July 11, 2010

Total
−0.67877
151

Partial in Poland
January 4, 2011

Partial
1.06265156July 1, 2001

Partial
−1.49171

2011–2014

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [113]

Частные солнечные затмения 4 января 2011 г. и 1 июля 2011 г. происходят в наборе затмений предыдущего лунного года.

солнечных затмений Серия с 2011 по 2014 год.
Descending node Ascending node
SarosMapGammaSarosMapGamma
118

Partial in Tromsø, Norway
June 1, 2011

Partial
1.21300123

Hinode XRT footage
November 25, 2011

Partial
−1.05359
128

Annularity in Red Bluff, CA, USA
May 20, 2012

Annular
0.48279133

Totality in Mount Carbine, Queensland, Australia
November 13, 2012

Total
−0.37189
138

Annularity in Churchills Head, Australia
May 10, 2013

Annular
−0.26937143

Partial in Libreville, Gabon
November 3, 2013

Hybrid
0.32715
148

Partial in Adelaide, Australia
April 29, 2014

Annular (non-central)
−0.99996153

Partial in Minneapolis, MN, USA
October 23, 2014

Partial
1.09078

2015–2018

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [114]

Частное солнечное затмение 13 июля 2018 года произойдет в наборе затмений следующего лунного года.

солнечных затмений Серия с 2015 по 2018 год.
Descending node Ascending node
SarosMapGammaSarosMapGamma
120

Totality in Longyearbyen, Svalbard
March 20, 2015

Total
0.94536125

Solar Dynamics Observatory

September 13, 2015

Partial
−1.10039
130

Balikpapan, Indonesia
March 9, 2016

Total
0.26092135

Annularity in L'Étang-Salé, Réunion
September 1, 2016

Annular
−0.33301
140

Partial from Buenos Aires, Argentina
February 26, 2017

Annular
−0.45780145

Totality in Madras, OR, USA
August 21, 2017

Total
0.43671
150

Partial in Olivos, Buenos Aires, Argentina
February 15, 2018

Partial
−1.21163155

Partial in Huittinen, Finland
August 11, 2018

Partial
1.14758

2018–2021

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [115]

Частные солнечные затмения 15 февраля 2018 г. и 11 августа 2018 г. произойдут в наборе затмений предыдущего лунного года.

Серия солнечных затмений устанавливается с 2018 по 2021 год.
Ascending node Descending node
SarosMapGammaSarosMapGamma
117

Partial in Melbourne, Australia
July 13, 2018

Partial
−1.35423122

Partial in Nakhodka, Russia
January 6, 2019

Partial
1.14174
127

Totality in La Serena, Chile
July 2, 2019

Total
−0.64656132

Annularity in Jaffna, Sri Lanka
December 26, 2019

Annular
0.41351
137

Annularity in Beigang, Yunlin, Taiwan
June 21, 2020

Annular
0.12090142

Totality in Gorbea, Chile
December 14, 2020

Total
−0.29394
147

Partial in Halifax, Canada
June 10, 2021

Annular
0.91516152

From HMS Protector off South Georgia
December 4, 2021

Total
−0.95261

2022–2025

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [116]

Серия солнечных затмений устанавливается с 2022 по 2025 год.
Ascending node Descending node
SarosMapGammaSarosMapGamma
119

Partial in CTIO, Chile
April 30, 2022

Partial
−1.19008124

Partial from Saratov, Russia
October 25, 2022

Partial
1.07014
129

Partial in Magetan, Indonesia
April 20, 2023

Hybrid
−0.39515134

Annularity in Hobbs, NM, USA
October 14, 2023

Annular
0.37534
139

Totality in Dallas, TX, USA
April 8, 2024

Total
0.34314144October 2, 2024

Annular
−0.35087
149March 29, 2025

Partial
1.04053154September 21, 2025

Partial
−1.06509

2026–2029

Это затмение входит в семестровую серию . Затмение в семестровой серии солнечных затмений повторяется примерно каждые 177 дней и 4 часа (семестр) в чередующихся узлах орбиты Луны. [117]

Частные солнечные затмения 12 июня 2029 года и 5 декабря 2029 года произойдут в рамках серии затмений следующего лунного года.

Серия солнечных затмений устанавливается с 2026 по 2029 год.
Ascending node Descending node
SarosMapGammaSarosMapGamma
121February 17, 2026

Annular
−0.97427126August 12, 2026

Total
0.89774
131February 6, 2027

Annular
−0.29515136August 2, 2027

Total
0.14209
141January 26, 2028

Annular
0.39014146July 22, 2008

Total
−0.60557
151January 14, 2029

Partial
1.05532156July 11, 2029

Partial
−1.41908

См. также

Сноски

Ссылки

  1. ^ «Что такое затмение?» . Европейское космическое агентство . Архивировано из оригинала 04 августа 2018 г. Проверено 4 августа 2018 г.
  2. ^ Перейти обратно: а б Литтманн, Марк; Эспенак, Фред; Уиллкокс, Кен (2008). Тотальность: Солнечные затмения . Издательство Оксфордского университета. стр. 18–19. ISBN  978-0-19-953209-4 .
  3. В 1935 году произошло пять солнечных затмений. НАСА (6 сентября 2009 г.). «Каталог солнечных затмений пяти тысячелетий» . Веб-сайт НАСА по затмению . Фред Эспенак , менеджер проектов и веб-сайтов. Архивировано из оригинала 29 апреля 2010 года . Проверено 26 января 2010 г.
  4. ^ Куккос, Кристина (14 мая 2009 г.). «Погоня за затмением в поисках полного трепета» . Нью-Йорк Таймс . Архивировано из оригинала 26 июня 2018 года . Проверено 15 января 2012 г.
  5. ^ Пасачофф, Джей М. (10 июля 2010 г.). «Почему я никогда не пропускаю солнечное затмение» . Нью-Йорк Таймс . Архивировано из оригинала 26 июня 2018 года . Проверено 15 января 2012 г.
  6. ^ Перейти обратно: а б с д и ж Харрингтон, стр. 9–11.
  7. ^ «Солнечные затмения» . Университет Теннесси . Архивировано из оригинала 9 июня 2015 года . Проверено 15 января 2012 г.
  8. ^ «Как Солнце полностью закрывается во время затмения?» . Космическая площадка НАСА . НАСА . 2009. Архивировано из оригинала 19 января 2021 г. Проверено 1 сентября 2019 г.
  9. ^ Сталь, с. 351
  10. ^ Физический факультет Университета Бэйлора (2024 г.). «Что такое солнечное затмение?» . Университет Бэйлора . Проверено 12 апреля 2024 г. Существует три основных типа солнечных затмений: полное солнечное затмение, частичное солнечное затмение, кольцевое солнечное затмение.
  11. ^ Перейти обратно: а б с «Каковы три типа солнечных затмений?» . Эксплораториум . Проверено 11 октября 2023 г.
  12. ^ Харрингтон, стр. 7–8.
  13. ^ «Затмение: Кто? Что? Где? Когда? и как? | Полное солнечное затмение 2017» . eclipse2017.nasa.gov . Архивировано из оригинала 18 сентября 2017 г. Проверено 21 сентября 2017 г.
  14. ^ Перейти обратно: а б Вильяльпандо, Роберто (15 сентября 2023 г.). «Октябрьское затмение будет кольцевым, а не ежегодным, но большие очки показывают, насколько оно может сбивать с толку» . Сан-Антонио Экспресс-Новости . Проверено 11 апреля 2024 г. Кольцевой означает, что он относится к кольцу или образует его [...] его корни происходят от латинского слова, обозначающего кольцо, «anulus». [...] Ежегодное, с другой стороны, означает происходящее каждый год или один раз в год. У этого слова также есть латинский предок: «annus», что означает год.
  15. ^ «Транзит Венеры, День Солнца – Земли 2012» . НАСА.gov . Архивировано из оригинала 14 января 2016 года . Проверено 7 февраля 2016 г.
  16. ^ Эспенак, Фред (26 сентября 2009 г.). «Солнечные затмения для начинающих» . MrEclipse.com . Архивировано из оригинала 24 мая 2015 года . Проверено 15 января 2012 г.
  17. ^ Перейти обратно: а б Эспенак, Фред (6 января 2009 г.). «Центральные солнечные затмения: 1991–2050 гг.» . Веб-сайт NASA Eclipse . Гринбелт, Мэриленд: Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 8 января 2021 года . Проверено 15 января 2012 г.
  18. ^ Вербелен, Феликс (ноябрь 2003 г.). «Солнечные затмения на Земле, с 1001 г. до н.э. по 2500 г. н.э.» . онлайн.be . Архивировано из оригинала 3 августа 2019 года . Проверено 15 января 2012 г.
  19. ^ Харрингтон, стр. 13–14; Сталь, стр. 266–279.
  20. ^ Мобберли, стр. 30–38.
  21. ^ Перейти обратно: а б с Харрингтон, стр. 4–5.
  22. ^ Хипшман, Рон. «Почему случаются затмения» . Эксплораториум . Архивировано из оригинала 27 декабря 2015 года . Проверено 14 января 2012 г.
  23. ^ Брюэр, Брайан (14 января 1998 г.). «Что вызывает затмение?» . Вид на Землю . Архивировано из оригинала 2 января 2013 года . Проверено 14 января 2012 г.
  24. ^ НАСА - Затмение 99 - Часто задаваемые вопросы. Архивировано 27 мая 2010 г. в Wayback Machine. - Есть ошибка в вопросе: Как долго мы сможем видеть полные затмения Солнца? ответьте: «...угловой диаметр Солнца варьируется от 32,7 угловых минут, когда Земля находится в самой дальней точке своей орбиты (афелий), до 31,6 угловых минут, когда она находится в самой близкой точке (перигелий)». Чем дальше, тем меньше он должен казаться, поэтому значения следует поменять местами.
  25. ^ Сталь, стр. 319–321.
  26. ^ Сталь, стр. 317–319.
  27. ^ Харрингтон, стр. 5–7.
  28. ^ Перейти обратно: а б Эспенак, Фред (28 августа 2009 г.). «Периодичность солнечных затмений» . Веб-сайт NASA Eclipse . Гринбелт, Мэриленд: Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 12 ноября 2020 года . Проверено 15 января 2012 г.
  29. ^ Эспенак, Фред; Меус, Жан (26 января 2007 г.). «Каталог солнечных затмений пяти тысячелетий: от -1999 до +3000» . Веб-сайт NASA Eclipse . Гринбелт, Мэриленд: Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 24 октября 2020 года . Проверено 15 января 2012 г.
  30. ^ Европейское космическое агентство , « Динамика полета космического корабля. Архивировано 11 декабря 2019 г. в Wayback Machine : материалы международного симпозиума, 18–22 мая 1981 г. - Дармштадт, Германия», стр. 347
  31. ^ Мобберли, стр. 33–37.
  32. ^ «Как происходят такие затмения, как затмения в среду, 14 ноября 2012 года?» . Сиднейская обсерватория . Архивировано из оригинала 29 апреля 2013 года . Проверено 20 марта 2015 г.
  33. ^ Сталь, стр. 52–53.
  34. ^ Перейти обратно: а б Зайдельманн, П. Кеннет; Урбан, Шон Э., ред. (2013). Объяснительное приложение к Астрономическому альманаху (3-е изд.). Университетские научные книги. ISBN  978-1-891389-85-6 .
  35. ^ Перейти обратно: а б с д Миус, Дж. (декабрь 2003 г.). «Максимально возможная продолжительность полного солнечного затмения». Журнал Британской астрономической ассоциации . 113 (6): 343–348. Бибкод : 2003JBAA..113..343M .
  36. ^ М. Литтман и др.
  37. ^ Эспенак, Фред (24 марта 2008 г.). «Мировой атлас траекторий солнечных затмений» . Веб-сайт NASA Eclipse . Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 14 июля 2012 года . Проверено 15 января 2012 г.
  38. ^ Сталь, с. 4
  39. ^ За 360 лет см. Харрингтон, с. 9; за 410 лет см. Сталь, с. 31
  40. ^ Мобберли, стр. 33–36; Сталь, с. 258
  41. ^ Бекман, Дж.; Бегот, Дж.; Чарвин, П.; Холл, Д.; Лена, П.; Суффло, А.; Либенберг, Д.; Райт, П. (1973). «Затмение полета Конкорда 001». Природа . 246 (5428): 72–74. Бибкод : 1973Natur.246...72B . дои : 10.1038/246072a0 . S2CID   10644966 .
  42. ^ Стивенсон, Ф. Ричард (1997). Исторические затмения и вращение Земли . Издательство Кембриджского университета. п. 54. дои : 10.1017/CBO9780511525186 . ISBN  0-521-46194-4 . Архивировано из оригинала 01 августа 2020 г. Проверено 4 января 2012 г.
  43. ^ Мобберли, с. 10
  44. ^ Эспенак, Фред (28 августа 2009 г.). «Затмения и Сарос» . Веб-сайт NASA Eclipse . Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 24 мая 2012 года . Проверено 15 января 2012 г.
  45. ^ Пого, Александр (1935). «Календарные годы с пятью солнечными затмениями». Популярная астрономия . Том. 43. с. 412. Бибкод : 1935PA.....43..412P .
  46. ^ «Что такое солнечные затмения и как часто они происходят?» . timeanddate.com . Архивировано из оригинала 2 февраля 2017 г. Проверено 23 ноября 2014 г.
  47. ^ Перейти обратно: а б Уокер, Джон (10 июля 2004 г.). «Луна возле Перигея, Земля возле Афелия» . Фурмилаб . Архивировано из оригинала 8 декабря 2013 года . Проверено 7 марта 2010 г.
  48. ^ Мэйо, Лу. «ЧТО СЛУЧАЕТСЯ? Самое последнее солнечное затмение!» . НАСА . Архивировано из оригинала 22 августа 2017 г. Проверено 22 августа 2017 г.
  49. ^ Эспенак, Фред (11 июля 2005 г.). «Безопасность глаз во время солнечных затмений» . Веб-сайт NASA Eclipse . Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 16 июля 2012 года . Проверено 15 января 2012 г.
  50. ^ Добсон, Роджер (21 августа 1999 г.). «Больницы Великобритании оценивают повреждение глаз после солнечного затмения» . Британский медицинский журнал . 319 (7208): 469. doi : 10.1136/bmj.319.7208.469 . ПМЦ   1116382 . ПМИД   10454393 .
  51. ^ МакРоберт, Алан М. (8 августа 2006 г.). «Как безопасно наблюдать частное солнечное затмение» . Небо и телескоп . Проверено 4 августа 2007 г.
  52. ^ Чоу, Б. Ральф (11 июля 2005 г.). «Безопасность глаз во время солнечных затмений» . Веб-сайт NASA Eclipse . Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 14 ноября 2020 года . Проверено 15 января 2012 г.
  53. ^ Литтманн, Марк; Уиллкокс, Кен; Эспенак, Фред (1999). «Безопасное наблюдение солнечных затмений» . MrEclipse.com . Архивировано из оригинала 26 июля 2020 года . Проверено 15 января 2012 г.
  54. ^ Чоу, Б. Ральф (20 января 2008 г.). «Фильтры затмений» . MrEclipse.com . Архивировано из оригинала 27 ноября 2020 года . Проверено 4 января 2012 г.
  55. ^ Перейти обратно: а б «Безопасность наблюдения за солнцем» . Обсерватория Перкинса . Архивировано из оригинала 14 июля 2020 года . Проверено 15 января 2012 г.
  56. ^ Перейти обратно: а б Харрингтон, с. 25
  57. ^ Харрингтон, с. 26
  58. ^ Харрингтон, с. 40
  59. ^ Перейти обратно: а б Литтманн, Марк; Уиллкокс, Кен; Эспенак, Фред (1999). «Опыт тотальности» . MrEclipse.com . Архивировано из оригинала 4 февраля 2012 года . Проверено 15 января 2012 г.
  60. ^ Кейт Руссо (2012). Тотальная зависимость: жизнь охотника за затмениями . Springer Science & Business Media. ISBN  978-3-642-30481-1 . Архивировано из оригинала 9 декабря 2019 года . Проверено 24 августа 2017 г.
  61. ^ Келли, Пэт (6 июля 2017 г.). «Умбрафил, умбрафилия, умбрафилы и умбрафилии - Солнечное затмение с Солнечным Альянсом» . Солнечное затмение с Солнечным Альянсом . Архивировано из оригинала 13 августа 2019 г. Проверено 24 августа 2017 г.
  62. ^ «Как безопасно наблюдать солнечное затмение 2017 года» . eclipse2017.nasa.gov . Архивировано из оригинала 24 августа 2017 г. Проверено 24 августа 2017 г.
  63. ^ Райт, Энди (16 августа 2017 г.). «В погоне за тотальностью: взгляд на мир умбрафилов» . Атлас Обскура . Архивировано из оригинала 14 декабря 2020 г. Проверено 24 августа 2017 г.
  64. ^ Вейтеринг, Ханнеке (28 июля 2017 г.). «Первая фотография полного солнечного затмения была сделана сегодня 166 лет назад» . Space.com . Проверено 8 апреля 2024 г.
  65. ^ Фарбер, Мэдлин (11 августа 2017 г.). «Это первая фотография полного солнечного затмения» . ВРЕМЯ . Проверено 9 апреля 2024 г.
  66. ^ Крамер, Билл. «Фотографирование полного солнечного затмения» . Eclipse-chasers.com . Архивировано из оригинала 29 января 2009 года . Проверено 7 марта 2010 г.
  67. ^ Воренкамп, Тодд (апрель 2017 г.). «Как сфотографировать солнечное затмение» . Фото-видео B&H . Архивировано из оригинала 1 июля 2019 года . Проверено 19 августа 2017 г.
  68. ^ Акта Эрудиторум . Лейпциг. 1762. с. 168. Архивировано из оригинала 31 июля 2020 г. Проверено 6 июня 2018 г.
  69. ^ «Историческая хронология солнечной физики (1223 г. до н.э. – 200 г. до н.э.) | Высотная обсерватория» . www2.hao.ucar.edu . Проверено 14 декабря 2023 г.
  70. ^ Смит, Киона Н. «Люди впервые зафиксировали полное солнечное затмение 3241 год назад» . Форбс . Проверено 14 декабря 2023 г.
  71. ^ Ван Гент, Роберт Гарри. «Астрономическая хронология» . Университет Утрехта . Архивировано из оригинала 28 июля 2020 года . Проверено 15 января 2012 г.
  72. ^ Харрингтон, с. 2
  73. ^ Блейксли, Сандра (14 ноября 2006 г.). «Древний крах, эпическая волна» . Нью-Йорк Таймс . Архивировано из оригинала 11 апреля 2009 года . Проверено 14 ноября 2006 г.
  74. ^ Сталь, с. 1
  75. ^ Сталь, стр. 84–85.
  76. ^ Ле Конте, Давид (6 декабря 1998 г.). «Цитаты затмения» . MrEclipse.com . Архивировано из оригинала 17 октября 2020 года . Проверено 8 января 2011 г.
  77. ^ Геродот. Книга VII . п. 37. Архивировано из оригинала 19 августа 2008 г. Проверено 13 июля 2008 г.
  78. ^ Чемберс, Г.Ф. (1889). Справочник по описательной и практической астрономии . Оксфорд: Кларендон Пресс. п. 323.
  79. ^ Перейти обратно: а б с д и Эспенак, Фред. «Солнечные затмения, представляющие исторический интерес» . Веб-сайт NASA Eclipse . Центр космических полетов имени Годдарда НАСА. Архивировано из оригинала 9 марта 2008 года . Проверено 28 декабря 2011 г.
  80. ^ Геродот. Книга IX . п. 10. Архивировано из оригинала 26 июля 2020 г. Проверено 14 июля 2008 г.
  81. ^ Шефер, Брэдли Э. (май 1994 г.). «Солнечные затмения, изменившие мир». Небо и телескоп . Том. 87, нет. 5. С. 36–39. Бибкод : 1994S&T....87...36S .
  82. ^ Перейти обратно: а б с д и Стивенсон, Ф. Ричард (1982). «Исторические затмения». Научный американец . Том. 247, нет. 4. С. 154–163. Бибкод : 1982SciAm.247d.154S .
  83. ^ Нидхэм, Джозеф (1986). Наука и цивилизация в Китае: Том 3 . Тайбэй: Пещерные книги. стр. 411–413. OCLC   48999277 .
  84. ^ Хамфрис, CJ; Уоддингтон, WG (1983). «Свидание с Распятием». Природа . 306 (5945): 743–746. Бибкод : 1983Natur.306..743H . дои : 10.1038/306743a0 . S2CID   4360560 .
  85. ^ Киджер, Марк (1999). Вифлеемская звезда: взгляд астронома . Принстон, Нью-Джерси: Издательство Принстонского университета. стр. 68–72 . ISBN  978-0-691-05823-8 .
  86. ^ О Кронин, Дайви (13 мая 2020 г.). «Шатущие годы: почему 664 год нашей эры был ужасным годом для Ирландии» . rte.ie Архивировано из оригинала 08 января 2021 г. Проверено 9 января 2021 г.
  87. ^ «Перевод Сахих Бухари, книга 18» .
  88. ^ Реджис Морелон (1996). «Общий обзор арабской астрономии». В Рошди Рашед (ред.). Энциклопедия истории арабской науки . Том. И. Рутледж. п. 15.
  89. ^ Фиске, Джон (1997). Мифы и мифотворцы Старые сказки и суеверия, интерпретированные сравнительной мифологией . Архивировано из оригинала 26 июля 2020 года . Получено 12 февраля 2017 г. - через Project Gutenberg.
  90. ^ «Наука о затмениях» . ЕКА . 28 сентября 2004 года. Архивировано из оригинала 1 августа 2012 года . Проверено 4 августа 2007 г.
  91. ^ Дравинс, Дайнис. «Летающие тени» . Лундская обсерватория . Архивировано из оригинала 26 июля 2020 года . Проверено 15 января 2012 г.
  92. ^ Джонсон-Гро, Мара (10 августа 2017 г.). «Пять советов от НАСА по фотографированию полного солнечного затмения 21 августа» . НАСА . Архивировано из оригинала 18 августа 2020 года . Проверено 21 сентября 2017 г.
  93. ^ Дайсон, ФРВ; Эддингтон, AS; Дэвидсон, ЧР (1920). «Определение отклонения света гравитационным полем Солнца по наблюдениям, сделанным во время солнечного затмения 29 мая 1919 года» . Фил. Пер. Рой. Соц. А. 220 (571–81): 291–333. Бибкод : 1920RSPTA.220..291D . дои : 10.1098/rsta.1920.0009 . Архивировано из оригинала 3 ноября 2020 года . Проверено 27 августа 2019 г.
  94. ^ «Относительность и затмение 1919 года» . ЕКА . 13 сентября 2004 года. Архивировано из оригинала 21 октября 2012 года . Проверено 11 января 2011 г.
  95. ^ Сталь, стр. 114–120.
  96. ^ Алле, Морис (1959). «Следует ли пересмотреть законы гравитации?». Аэро/космическая техника . 9 : 46–55.
  97. ^ Саксл, Эрвин Дж.; Аллен, Милдред (1971). «Солнечное затмение 1970 года, «увиденное» крутильным маятником». Физический обзор D . 3 (4): 823–825. Бибкод : 1971PhRvD...3..823S . дои : 10.1103/PhysRevD.3.823 .
  98. ^ Ван, Цянь-шэнь; Ян, Синь-ше; У, Чуань-чжэнь; Го, Хун-банда; Лю, Хун-чен; Хуа, Чан-чай (2000). «Точное измерение изменений силы тяжести во время полного солнечного затмения». Физический обзор D . 62 (4): 041101(р). arXiv : 1003.4947 . Бибкод : 2000PhRvD..62d1101W . дои : 10.1103/PhysRevD.62.041101 . S2CID   6846335 .
  99. ^ Ян, XS; Ван, QS (2002). «Аномалия гравитации во время полного солнечного затмения Мохэ и новое ограничение на параметр гравитационного экранирования». Астрофизика и космическая наука . 282 (1): 245–253. Бибкод : 2002Ap&SS.282..245Y . дои : 10.1023/A:1021119023985 . S2CID   118497439 .
  100. ^ Миус, Дж.; Витальяно, А. (2004). «Одновременные транзиты» (PDF) . Дж. Бр. Астрон. доц . 114 (3): 132–135. Бибкод : 2004JBAA..114..132M . Архивировано из оригинала (PDF) 10 июля 2007 г.
  101. ^ Грего, Питер (2008). Венера и Меркурий и как их наблюдать . Спрингер. п. 3. ISBN  978-0387742854 .
  102. ^ «ИСС-Венустранзит» . astronomie.info (на немецком языке). Архивировано из оригинала 28 июля 2020 г. Проверено 29 июля 2004 г.
  103. ^ «ОАО «Коллекция цифровых изображений» . Космический центр НАСА имени Джонсона . 11 января 2006. Архивировано из оригинала 4 февраля 2012 года . Проверено 15 января 2012 г.
  104. ^ Немиров Р.; Боннелл, Дж., ред. (30 августа 1999 г.). «Оглядываясь на затменную Землю» . Астрономическая картина дня . НАСА . Проверено 15 января 2012 г.
  105. ^ « Солнечное затмение 2015 г. - Анализ воздействия. Архивировано 21 февраля 2017 г. в Wayback Machine », стр. 3, 6–7, 13. Европейская сеть операторов систем передачи электроэнергии , 19 февраля 2015 г. По состоянию на 4 марта 2015 г.
  106. ^ «Кривая потенциальных потерь мощности» . ing.dk. Архивировано из оригинала 28 июля 2020 г. Проверено 4 марта 2015 г.
  107. ^ Грей, СЛ; Харрисон, Р.Г. (2012). «Диагностика изменений ветра, вызванных затмением» . Труды Королевского общества . 468 (2143): 1839–1850. Бибкод : 2012RSPSA.468.1839G . дои : 10.1098/rspa.2012.0007 . Архивировано из оригинала 4 марта 2015 г. Проверено 4 марта 2015 г.
  108. ^ Молодой, Алекс. «Как работают затмения» . НАСА . Архивировано из оригинала 18 сентября 2017 г. Проверено 21 сентября 2017 г.
  109. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  110. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  111. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  112. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  113. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  114. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  115. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  116. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.
  117. ^ ван Гент, Р.Х. «Прогнозы солнечного и лунного затмения от древности до наших дней» . Каталог циклов затмений . Утрехтский университет . Проверено 6 октября 2018 г.

Библиография

Послушайте эту статью
(2 части, 27 минут )
  1. Продолжительность: 15 минут 41 секунда.
  2. Продолжительность: 11 минут 48 секунд.
Разговорная иконка Википедии
Эти аудиофайлы были созданы на основе редакции этой статьи от 3 мая 2006 г. ( 2006-05-03 ) и не отражают последующие изменения.

Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: ce7bf6b434d11a9f2cc98a7ef3101521__1722128880
URL1:https://arc.ask3.ru/arc/aa/ce/21/ce7bf6b434d11a9f2cc98a7ef3101521.html
Заголовок, (Title) документа по адресу, URL1:
Solar eclipse - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)