Order-8 square tiling
Order-8 square tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 48 |
Schläfli symbol | {4,8} |
Wythoff symbol | 8 | 4 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [8,4], (*842) |
Dual | Order-4 octagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.
Symmetry
[edit]This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with eight squares around every vertex. This symmetry by orbifold notation is called (*4444) with 4 order-4 mirror intersections. In Coxeter notation can be represented as [1+,8,8,1+], (*4444 orbifold) removing two of three mirrors (passing through the square center) in the [8,8] symmetry. The *4444 symmetry can be doubled by bisecting the fundamental domain (square) by a mirror, creating *884 symmetry.
This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction (4,4,4), or {4[3]}, :
![]() |
![]() |
Related polyhedra and tiling
[edit]This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
*n42 symmetry mutation of regular tilings: {4,n} |
---|
Uniform octagonal/square tilings |
---|
Uniform (4,4,4) tilings |
---|
See also
[edit]
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.