Jump to content

Domain of a function

From Wikipedia, the free encyclopedia
(Redirected from Domain (function))
A function f from X to Y. The set of points in the red oval X is the domain of f.
Graph of the real-valued square root function, f(x) = x, whose domain consists of all nonnegative real numbers

In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by or , where f is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be".[1]

More precisely, given a function , the domain of f is X. In modern mathematical language, the domain is part of the definition of a function rather than a property of it.

In the special case that X and Y are both sets of real numbers, the function f can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the x-axis of the graph, as the projection of the graph of the function onto the x-axis.

For a function , the set Y is called the codomain: the set to which all outputs must belong. The set of specific outputs the function assigns to elements of X is called its range or image. The image of f is a subset of Y, shown as the yellow oval in the accompanying diagram.

Any function can be restricted to a subset of its domain. The restriction of to , where , is written as .

Natural domain[edit]

If a real function f is given by a formula, it may be not defined for some values of the variable. In this case, it is a partial function, and the set of real numbers on which the formula can be evaluated to a real number is called the natural domain or domain of definition of f. In many contexts, a partial function is called simply a function, and its natural domain is called simply its domain.

Examples[edit]

  • The function defined by cannot be evaluated at 0. Therefore, the natural domain of is the set of real numbers excluding 0, which can be denoted by or .
  • The piecewise function defined by has as its natural domain the set of real numbers.
  • The square root function has as its natural domain the set of non-negative real numbers, which can be denoted by , the interval , or .
  • The tangent function, denoted , has as its natural domain the set of all real numbers which are not of the form for some integer , which can be written as .

Other uses[edit]

The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis, a domain is a non-empty connected open subset of the real coordinate space or the complex coordinate space

Sometimes such a domain is used as the domain of a function, although functions may be defined on more general sets. The two concepts are sometimes conflated as in, for example, the study of partial differential equations: in that case, a domain is the open connected subset of where a problem is posed, making it both an analysis-style domain and also the domain of the unknown function(s) sought.

Set theoretical notions[edit]

For example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition, functions do not have a domain, although some authors still use it informally after introducing a function in the form f: XY.[2]

See also[edit]

Notes[edit]

  1. ^ "Domain, Range, Inverse of Functions". Easy Sevens Education. Retrieved 2023-04-13.
  2. ^ Eccles 1997, p. 91 (quote 1, quote 2); Mac Lane 1998, p. 8; Mac Lane, in Scott & Jech 1971, p. 232; Sharma 2010, p. 91; Stewart & Tall 1977, p. 89

References[edit]