Ivy Bridge (microarchitecture)
General information | |
---|---|
Launched | April 29, 2012 |
Discontinued | June 5, 2015 |
Marketed by | Intel |
Designed by | Intel |
Common manufacturer | |
CPUID code | 0306A9h |
Product code | 80633 (extreme desktop) 80634 (server LGA1356) 80635 (server E5 LGA2011) 80636 (server E7 LGA2011) 80637 (desktop) 80638 (mobile) |
Performance | |
Max. CPU clock rate | 1.4 to 4.1 GHz |
DMI speeds | 4 GT/s |
Cache | |
L1 cache | 64 KB per core (32 KB instructions + 32 KB data) |
L2 cache | 256 KB per core |
L3 cache | 2 to 37.5 MB shared |
Architecture and classification | |
Technology node | Intel 22 nm |
Instruction set | x86-16, IA-32, x86-64 |
Extensions | |
Physical specifications | |
Transistors |
|
Cores |
|
GPUs | HD Graphics 2500 650 to 1150 MHz HD Graphics 4000 350 to 1300 MHz HD Graphics P4000 650 to 1250 MHz |
Sockets | |
Products, models, variants | |
Models |
|
Brand names | |
History | |
Predecessor | Sandy Bridge (Tock) |
Successor | Haswell (Tock/Architecture) |
Support status | |
Unsupported |
Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors (Core i7, i5, i3). Ivy Bridge is a die shrink to 22 nm process based on FinFET ("3D") Tri-Gate transistors, from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model. The name is also applied more broadly to the Xeon and Core i7 Extreme Ivy Bridge-E series of processors released in 2013.
Ivy Bridge processors are backward compatible with the Sandy Bridge platform, but such systems might require a firmware update (vendor specific).[2] In 2011, Intel released the 7-series Panther Point chipsets with integrated USB 3.0 and SATA 3.0 to complement Ivy Bridge.[3]
Volume production of Ivy Bridge chips began in the third quarter of 2011.[4] Quad-core and dual-core-mobile models launched on April 29, 2012 and May 31, 2012 respectively.[5] Core i3 desktop processors, as well as the first 22 nm Pentium, were announced and available the first week of September 2012.[6]
Ivy Bridge is the final Intel platform on which versions of Windows prior to Windows 7 are officially supported by Microsoft. It is also the earliest Intel microarchitecture to officially support Windows 10 64-bit (NT 10.0).[7]
Overview[edit]
The Ivy Bridge CPU microarchitecture is a shrink from Sandy Bridge and remains largely unchanged. Like its predecessor, Sandy Bridge, Ivy Bridge was also primarily developed by Intel's Israel branch, located in Haifa, Israel.[8] Notable improvements include:[9][10]
- New 22 nm Tri-gate transistor ("3-D") technology offer as much as a 50% reduction to power consumption at the same performance level as compared to 2-D planar transistors on Intel's 32 nm process.[11]
- A new pseudorandom number generator and the RDRAND instruction,[12] codenamed Bull Mountain.[13]
Ivy Bridge features and performance[edit]
The mobile and desktop Ivy Bridge chips also include some minor yet notable changes over Sandy Bridge:
CPU[edit]
- F16C (16-bit floating-point conversion instructions)[14]
- RDRAND instruction (Intel Secure Key)[15]
- Max CPU multiplier of 63 (versus 57 for Sandy Bridge)[16]
- Configurable TDP (cTDP) for mobile processors[17]
- A 14- to 19-stage instruction pipeline, depending on the micro-operation cache hit or miss[18]
Translation lookaside buffer sizes[19][20] Cache Page Size Name Level 4 KB 2 MB 1 GB DTLB 1st 64 32 4 ITLB 1st 128 8 / logical core none STLB 2nd 512 none none
GPU[edit]
- The built-in GPU has 6 or 16 execution units (EUs), compared to Sandy Bridge's 6 or 12.[21]
- Intel HD Graphics with DirectX 11, OpenGL 4.0, and OpenCL 1.2 support on Windows.[22] On Linux, OpenGL 4.2 is supported since Mesa 17.1.[23]
- Support for up to three displays (with some limitations: with chipset of 7-series and using two of them with DisplayPort or eDP)[24]
- Multiple 4K displays video playback
- Intel Quick Sync Video version 2[21]
IO[edit]
- RAM support up to 2800 MT/s in 200 MHz increments[16]
- DDR3L for mobile CPUs
- PCI Express 3.0 support (omitted on Core i3, Pentium, and ultra-low-voltage [ULV] processors)[25]
Benchmark comparisons[edit]
Compared to its predecessor, Sandy Bridge:
- 3% to 6% increase in CPU performance when compared clock for clock[26][27]
- 25% to 68% increase in integrated GPU performance[28]
Thermal performance issues[edit]
Ivy Bridge's temperatures are reportedly 10 °C higher compared to Sandy Bridge when a CPU is overclocked, even at default voltage setting.[29] Impress PC Watch, a Japanese website, performed experiments that confirmed earlier speculations that this is because Intel used a poor quality (and perhaps lower cost) thermal interface material (thermal paste, or "TIM") between the chip and the heat spreader, instead of the fluxless solder of previous generations.[30][31][32] The mobile Ivy Bridge processors are not affected by this issue because they do not use a heat spreader between the chip and cooling system. Socket 2011 Ivy Bridge processors continue to use the solder.[33]
Enthusiast reports describe the TIM used by Intel as low-quality,[32] and not up to par for a "premium" CPU, with some speculation that this is by design to encourage sales of prior processors.[30] Further analyses caution that the processor can be damaged or void its warranty if home users attempt to remedy the matter.[30][34] The TIM has much lower thermal conductivity, causing heat to trap on the die.[29] Experiments with replacing this TIM with a higher-quality one or other heat removal methods showed a substantial temperature drop, and improvements to the increased voltages and overclocking sustainable by Ivy Bridge chips.[30][35]
Intel claims that the smaller die of Ivy Bridge and the related increase in thermal density is expected to result in higher temperatures when the CPU is overclocked; Intel also stated that this is as expected and will likely not improve in future revisions.[36]
Models and steppings[edit]
All Ivy Bridge processors with one, two, or four cores report the same CPUID model 0x000306A9, and are built in four different configurations differing in the number of cores, L3 cache and GPU execution units.
Die code name | CPUID | Stepping | Die size | Die dimensions | Transistors | Cores | GPU EUs | L3 cache | Sockets |
---|---|---|---|---|---|---|---|---|---|
Ivy Bridge-M-2 | 0x000306A9
|
P0 | [37] | 94 mm27.656 × 12.223 mm | [a] | ≈634 million2 | 6[38] | 3 MB[39] | LGA 1155, Socket G2, BGA-1224, BGA-1023, BGA-1284 |
Ivy Bridge-H-2 | L1 | 118 mm2[37] | 8.141 × 14.505 mm | [a] | ≈830 million16 | 4 MB | |||
Ivy Bridge-HM-4 | N0 | 133 mm2[37] | 7.656 × 17.349 mm | ≈1008 million[a] | 4 | 6 | 6 MB[39] | ||
Ivy Bridge-HE-4 | E1 | 160 mm2[37] | 8.141 × 19.361 mm | ≈1400 million[40] | 16 | 8 MB |
Ivy Bridge–based Xeon processors[edit]
Intel Ivy Bridge–based Xeon microprocessors (also known as Ivy Bridge-E) is the follow-up to Sandy Bridge-E, using the same CPU core as the Ivy Bridge processor, but in LGA 2011, LGA 1356 and LGA 2011-1 packages for workstations and servers.
Additional high-end server processors based on the Ivy Bridge architecture, code named Ivytown, were announced September 10, 2013 at the Intel Developer Forum, after the usual one year interval between consumer and server product releases.[41][42][43]
The Ivy Bridge-EP processor line announced in September 2013 has up to 12 cores and 30 MB third level cache, with rumors of Ivy Bridge-EX up to 15 cores and an increased third level cache of up to 37.5 MB,[44][45] although an early leaked lineup of Ivy Bridge-E included processors with a maximum of 6 cores.[46]
Both Core-i7 and Xeon versions are produced: the Xeon versions marketed as Xeon E5-1400 v2 act as drop-in replacements for the existing Sandy Bridge-EN based Xeon E5, Xeon E5-2600 V2 versions act as drop-in replacements for the existing Sandy Bridge-EP based Xeon E5, while Core-i7 versions designated i7-4820K, i7-4930K and i7-4960X were released on September 10, 2013, remaining compatible with the X79 and LGA 2011 hardware.[45][47]
Русские даже тут! LGA 1356 socket, Intel launched the Xeon E5-2400 v2 (codenamed Ivy Bridge-EN) series in January 2014.[48] These have up to 10 cores.[49]
A new Ivy Bridge-EX line marketed as Xeon E7 v2 had no corresponding predecessor using the Sandy Bridge microarchitecture but instead followed the older Westmere-EX processors.
List of Ivy Bridge processors[edit]
Processors featuring Intel's HD 4000 graphics (or HD P4000 for Xeon) are set in bold. Other processors feature HD 2500 graphics or HD Graphics unless indicated by N/A.
Desktop processors[edit]
List of announced desktop processors, as follows:
Processor branding and model |
Cores (threads) |
CPU clock rate | Graphics clock rate | L3 cache |
TDP | Release date |
Release price (USD) |
Motherboard | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Turbo | Normal | Turbo | Socket | Interface | Memory | |||||||
Core i7 Extreme |
4960X | 6 (12) | 3.6 GHz | 4.0 GHz | — | 15 MB | 130 W | 2013-09-10 | $999[50] | LGA 2011 |
DMI 2.0 PCIe 3.0[a] |
Up to quad channel DDR3-1866 | |
Core i7 | 4930K | 3.4 GHz | 3.9 GHz | 12 MB | $583[50] | ||||||||
4820K | 4 (8) | 3.7 GHz | 10 MB | $323[50] | |||||||||
3770K | 3.5 GHz | 650 MHz | 1150 MHz | 8 MB | 77 W | 2012-04-23 | $332 | LGA 1155 |
Up to dual channel DDR3-1600[51] | ||||
3770 | 3.4 GHz | $294 | |||||||||||
3770S | 3.1 GHz | 65 W | |||||||||||
3770T | 2.5 GHz | 3.7 GHz | 45 W | ||||||||||
Core i5 | 3570K | 4 (4) | 3.4 GHz | 3.8 GHz | 6 MB | 77 W | $225 | ||||||
3570 | 2012-05-31[52] | $205 | |||||||||||
3570S | 3.1 GHz | 65 W | |||||||||||
3570T | 2.3 GHz | 3.3 GHz | 45 W | ||||||||||
3550 | 3.3 GHz | 3.7 GHz | 77 W | 2012-04-23 | |||||||||
3550S | 3.0 GHz | 65 W | |||||||||||
3475S | 2.9 GHz | 3.6 GHz | 1050 MHz | 2012-05-31[52] | $201 | ||||||||
3470 | 3.2 GHz | 77 W | $184 | ||||||||||
3470S | 2.9 GHz | 65 W | |||||||||||
3470T | 2 (4) | 3 MB | 35 W | ||||||||||
3450 | 4 (4) | 3.1 GHz | 3.5 GHz | 6 MB | 77 W | 2012-04-23 | |||||||
3450S | 2.8 GHz | 65 W | |||||||||||
3350P | 3.1 GHz | 3.3 GHz | — | 69 W | 2012-09-03 | $177 | |||||||
3340 | 650 MHz | 1050 MHz | 77 W | 2013-09-01 | $182 | ||||||||
3340S | 2.8 GHz | 65 W | |||||||||||
3335S | 2.7 GHz | 3.2 GHz | 2012-09-03 | $194 | |||||||||
3330S | $177 | ||||||||||||
3330 | 3.0 GHz | 77 W | $182 | ||||||||||
Core i3 | 3250 | 2 (4) | 3.5 GHz | — | 3 MB | 55 W | 2013-06-09 | $138 | DMI 2.0 PCIe 2.0 | ||||
3245 | 3.4 GHz | $134 | |||||||||||
3240 | 2012-09-03 | $138 | |||||||||||
3225 | 3.3 GHz | $134 | |||||||||||
3220 | $117 | ||||||||||||
3210 | 3.2 GHz | 2013-01-20 | |||||||||||
3250T | 3.0 GHz | 35 W | 2013-06-09 | $138 | |||||||||
3240T | 2.9 GHz | 2012-09-03 | |||||||||||
3220T | 2.8 GHz | $117 | |||||||||||
Pentium | G2140 | 2 (2) | 3.3 GHz | 55 W | 2013-06-09 | $86 | |||||||
G2130 | 3.2 GHz | 2013-01-20 | |||||||||||
G2120 | 3.1 GHz | 2012-09-03 | |||||||||||
G2120T | 2.7 GHz | 35 W | 2013-06-09 | $75 | |||||||||
G2100T | 2.6 GHz | 2012-09-03 | |||||||||||
G2030 | 3.0 GHz | 55 W | 2013-06-09 | $64 | Dual channel DDR3-1333 | ||||||||
G2020 | 2.9 GHz | 2013-01-20 | |||||||||||
G2010 | 2.8 GHz | ||||||||||||
G2030T | 2.6 GHz | 35 W | 2013-06-09 | ||||||||||
G2020T | 2.5 GHz | 2013-01-20 | |||||||||||
Celeron | G1630 | 2.8 GHz | 2 MB | 55 W | 2013-09-01 | $52 | |||||||
G1620 | 2.7 GHz | 2013-01-20 | |||||||||||
G1610 | 2.6 GHz | $42 | |||||||||||
G1620T | 2.4 GHz | 35 W | 2013-09-01 | ||||||||||
G1610T | 2.3 GHz | 2013-01-20 |
- Requires a compatible motherboard with 7 series chipsets.
Suffixes to denote:
- K – Unlocked (adjustable CPU multiplier up to 63 times)
- S – Performance-optimized lifestyle (low power with 65 W TDP)
- T – Power-optimized lifestyle (ultra-low power consumption with 35–45 W TDP)
- P – No on-die video chipset
- X – Extreme performance (adjustable CPU ratio with no ratio limit)
Server processors[edit]
Processor branding and model |
Cores (threads) |
CPU clock rate | Graphics clock rate | L3 cache |
TDP | Release date |
Price (USD) |
Motherboard | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal | Turbo | Normal | Turbo | Socket | Interface | Memory | |||||||
Xeon E7 | 8893v2 | 6 (12) | 3.4 GHz | 3.7 GHz | — | 37.5 MB | 155 W | 2014-02-18 | $6841 | LGA 2011-1 |
3× QPI DMI 2.0 PCIe 3.0 |
Up to quad channel DDR3-1600 | |
8891v2 | 10 (20) | 3.2 GHz | |||||||||||
8895v2 | 15 (30) | 2.8 GHz | 3.6 GHz | OEM (Oracle)[53] | |||||||||
8890v2 | 3.4 GHz | $6841 | |||||||||||
4890v2 | $6619 | ||||||||||||
2890v2 | $6451 | ||||||||||||
8880Lv2 | 2.2 GHz | 2.8 GHz | 105 W | $5729 | |||||||||
8880v2 | 2.5 GHz | 3.1 GHz | 130 W | ||||||||||
4880v2 | $5506 | ||||||||||||
2880v2 | $5339 | ||||||||||||
8870v2 | 2.3 GHz | 2.9 GHz | 30 MB | $4616 | |||||||||
4870v2 | $4394 | ||||||||||||
2870v2 | $4227 | ||||||||||||
8857v2 | 12 (12) | 3.0 GHz | 3.6 GHz | $3838 | |||||||||
4860v2 | 12 (24) | 2.6 GHz | 3.2 GHz | ||||||||||
8850v2 | 2.3 GHz | 2.8 GHz | 24 MB | 105 W | $3059 | ||||||||
4850v2 | $2837 | ||||||||||||
2850v2 | $2558 | ||||||||||||
4830v2 | 10 (20) | 2.2 GHz | 2.7 GHz | 20 MB | $2059 | ||||||||
4820v2 | 8 (16) | 2.0 GHz | 2.5 GHz | 16 MB | $1446 | ||||||||
4809v2 | 6 (12) | 1.9 GHz | — | 12 MB | $1223 | Up to quad channel DDR3-1333 | |||||||
Xeon E5 | 4657Lv2 | 12 (24) | 2.4 GHz | 3.2 GHz | 30 MB | 115 W | 2014-03-03 | $4394 | LGA 2011 |
2× QPI DMI 2.0 PCIe 3.0 |
Up to quad channel DDR3-1866 | ||
4650v2 | 10 (20) | 25 MB | 95 W | $3616 | |||||||||
4640v2 | 2.2 GHz | 2.7 GHz | 20 MB | $2725 | |||||||||
4624Lv2 | 1.9 GHz | 2.5 GHz | 25 MB | 70 W | $2405 | ||||||||
4627v2 | 8 (8) | 3.3 GHz | 3.6 GHz | 16 MB | 130 W | $2108 | |||||||
4620v2 | 8 (16) | 2.6 GHz | 3.0 GHz | 20 MB | 95 W | $1611 | Up to quad channel DDR3-1600 | ||||||
4610v2 | 2.3 GHz | 2.7 GHz | 16 MB | $1219 | |||||||||
4607v2 | 6 (12) | 2.6 GHz | — | 15 MB | $885 | Up to quad channel DDR3-1333 | |||||||
4603v2 | 4 (8) | 2.2 GHz | 10 MB | $551 | |||||||||
2697v2 | 12 (24) | 2.7 GHz | 3.5 GHz | 30 MB | 130 W | 2013-09-10 | $2614 | Up to quad channel DDR3-1866 | |||||
2696v2 | 2.5 GHz | 3.3 GHz | 120 W | OEM | |||||||||
2695v2 | 2.4 GHz | 3.2 GHz | 115 W | $2336 | |||||||||
2692v2 | 2.2 GHz | 3.0 GHz | June 2013 | OEM (Tianhe-2) | |||||||||
2651v2 | 1.8 GHz | 2.2 GHz | 105 W | 2013-09-10 | |||||||||
2690v2 | 10 (20) | 3.0 GHz | 3.6 GHz | 25 MB | 130 W | $2057 | |||||||
2680v2 | 2.8 GHz | 115 W | $1723 | ||||||||||
2670v2 | 2.5 GHz | 3.3 GHz | $1552 | ||||||||||
2660v2 | 2.2 GHz | 3.0 GHz | 95 W | $1389 | |||||||||
2658v2 | 2.4 GHz | $1750 | |||||||||||
2650Lv2 | 1.7 GHz | 2.1 GHz | 70 W | $1219 | Up to quad channel DDR3-1600 | ||||||||
2648Lv2 | 1.9 GHz | 2.5 GHz | $1479 | Up to quad channel DDR3-1866 | |||||||||
2687Wv2 | 8 (16) | 3.4 GHz | 4.0 GHz | 150 W | $2108 | ||||||||
2667v2 | 3.3 GHz | 130 W | $2057 | ||||||||||
2650v2 | 2.6 GHz | 3.4 GHz | 20 MB | 95 W | $1166 | ||||||||
2640v2 | 2.0 GHz | 2.5 GHz | $885 | Up to quad channel DDR3-1600 | |||||||||
2628Lv2 | 1.9 GHz | 2.4 GHz | 70 W | $1216 | |||||||||
2643v2 | 6 (12) | 3.5 GHz | 3.8 GHz | 25 MB | 130 W | $1552 | Up to quad channel DDR3-1866 | ||||||
2630v2 | 2.6 GHz | 3.1 GHz | 15 MB | 80 W | $612 | Up to quad channel DDR3-1600 | |||||||
2630Lv2 | 2.4 GHz | 2.8 GHz | 60 W | ||||||||||
2620v2 | 2.1 GHz | 2.6 GHz | 80 W | $406 | |||||||||
2618Lv2 | 2.0 GHz | — | 50 W | $520 | Up to quad channel DDR3-1333 | ||||||||
2637v2 | 4 (8) | 3.5 GHz | 3.8 GHz | 130 W | $996 | Up to quad channel DDR3-1866 | |||||||
2609v2 | 4 (4) | 2.5 GHz | — | 10 MB | 80 W | $294 | Up to quad channel DDR3-1333 | ||||||
2603v2 | 1.8 GHz | $202 | |||||||||||
2470v2 | 10 (20) | 2.4 GHz | 3.2 GHz | 25 MB | 95 W | 2014-01-09 | $1440 | LGA 1356 |
1× QPI DMI 2.0 PCIe 3.0 |
Up to triple channel DDR3-1600 | |||
2448Lv2 | 1.8 GHz | 2.4 GHz | 70 W | $1424 | |||||||||
2450Lv2 | 1.7 GHz | 2.1 GHz | 60 W | $1219 | |||||||||
2450v2 | 8 (16) | 2.5 GHz | 3.3 GHz | 20 MB | 95 W | $1107 | |||||||
2440v2 | 1.9 GHz | 2.4 GHz | $832 | ||||||||||
2428Lv2 | 1.8 GHz | 2.3 GHz | 60 W | $1013 | |||||||||
2430v2 | 6 (12) | 2.5 GHz | 3.0 GHz | 15 MB | 80 W | $551 | |||||||
2420v2 | 2.2 GHz | 2.7 GHz | $406 | ||||||||||
2430Lv2 | 2.4 GHz | 2.8 GHz | 60 W | $612 | |||||||||
2418Lv2 | 2.0 GHz | — | 50 W | $607 | Up to triple channel DDR3-1333 | ||||||||
2407v2 | 4 (4) | 2.4 GHz | 10 MB | 80 W | $250 | ||||||||
2403v2 | 1.8 GHz | $192 | |||||||||||
1680v2 | 8 (16) | 3.0 GHz | 3.9 GHz | 25 MB | 130 W | 2013-09-10 | $1723 | LGA 2011 |
0× QPI DMI 2.0 PCIe 3.0 |
Up to quad channel DDR3-1866 | |||
1660v2 | 6 (12) | 3.7 GHz | 4.0 GHz | 15 MB | $1080 | ||||||||
1650v2 | 3.5 GHz | 3.9 GHz | 12 MB | $583 | |||||||||
1620v2 | 4 (8) | 3.7 GHz | 10 MB | $294 | |||||||||
1607v2 | 4 (4) | 3.0 GHz | — | $244 | Up to quad channel DDR3-1600 | ||||||||
1428Lv2 | 6 (12) | 2.2 GHz | 2.7 GHz | 15 MB | 60 W | 2014-01-09 | $494 | LGA 1356 |
Up to triple channel DDR3-1600 | ||||
1410v2 | 4 (8) | 2.8 GHz | 3.2 GHz | 10 MB | 80 W | OEM | |||||||
Pentium | 1403v2 | 2 (2) | 2.6 GHz | — | 6 MB | ||||||||
1405v2 | 1.4 GHz | 40 W | $156 | ||||||||||
Xeon E3 | 1290v2 | 4 (8) | 3.7 GHz | 4.1 GHz | 8 MB | 87 W | 2012-05-14 | $885 | LGA 1155 |
DMI 2.0 PCIe 3.0 |
Up to dual channel DDR3-1600 | ||
1280v2 | 3.6 GHz | 4.0 GHz | 69 W | $623 | |||||||||
1275v2 | 3.5 GHz | 3.9 GHz | 650 MHz | 1.25 GHz | 77 W | $350 | |||||||
1270v2 | — | 69 W | $339 | ||||||||||
1265Lv2 | 2.5 GHz | 3.5 GHz | 650 MHz | 1.15 GHz | 45 W | $305 | |||||||
1245v2 | 3.4 GHz | 3.8 GHz | 650 MHz | 1.25 GHz | 77 W | $273 | |||||||
1240v2 | — | 69 W | $261 | ||||||||||
1230v2 | 3.3 GHz | 3.7 GHz | $230 | ||||||||||
1225v2 | 4 (4) | 3.2 GHz | 3.6 GHz | 650 MHz | 1.25 GHz | 77 W | $224 | ||||||
1220v2 | 3.1 GHz | 3.5 GHz | — | 69 W | $203 | ||||||||
1220Lv2 | 2 (4) | 2.3 GHz | 3 MB | 17 W | $189 | ||||||||
1135Cv2 | 4 (8) | 3.0 GHz | — | 8 MB | 55 W | 2013-09-10 | OEM | BGA 1284 | |||||
1125Cv2 | 2.5 GHz | 40 W | $448 | ||||||||||
1105Cv2 | 1.8 GHz | 25 W | $320 |
Suffixes to denote:
- L – Low power
- C – Embedded applications
- W – Optimized for workstations
Mobile processors[edit]
Processor branding and model |
Cores (threads) |
Programmable TDP | CPU Turbo | Graphics clock rate | L3 cache |
Release date |
Price (USD) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SDP[54] | cTDP down | Nominal TDP | cTDP up | 1-core | Normal | Turbo | ||||||
Core i7 Extreme |
3940XM | 4 (8) | — | 45 W / ? GHz | 55 W / 3.0 GHz | 65 W / ? GHz | 3.9 GHz | 650 MHz | 1350 MHz | 8 MB | 2012-09-30 | $1096 |
3920XM | 45 W / ? GHz | 55 W / 2.9 GHz | 65 W / ? GHz | 3.8 GHz | 1300 MHz | 2012-04-23 | ||||||
Core i7 | 3840QM | — | 45 W / 2.8 GHz | — | 2012-09-30 | $568 | ||||||
3820QM | 45 W / 2.7 GHz | 3.7 GHz | 1250 MHz | 2012-04-23 | ||||||||
3740QM | 1300 MHz | 6 MB | 2012-09-30 | $378 | ||||||||
3720QM | 45 W / 2.6 GHz | 3.6 GHz | 1250 MHz | 2012-04-23 | ||||||||
3635QM | 45 W / 2.4 GHz | 3.4 GHz | 1200 MHz | 2012-09-30 | — | |||||||
3632QM | 35 W / 2.2 GHz | 3.2 GHz | 1150 MHz | $378 | ||||||||
3630QM | 45 W / 2.4 GHz | 3.4 GHz | ||||||||||
3615QM | 45 W / 2.3 GHz | 3.3 GHz | 1200 MHz | 2012-04-23 | ||||||||
3612QM | 35 W / 2.1 GHz | 3.1 GHz | 1100 MHz | |||||||||
3610QM | 45 W / 2.3 GHz | 3.3 GHz | ||||||||||
3689Y | 2 (4) | 7 W / ? GHz | 10 W / ? GHz | 13 W / 1.5 GHz | 2.6 GHz | 350 MHz | 850 MHz | 4 MB | 2013-01-07 | $362 | ||
3687U | — | 14 W / ? GHz | 17 W / 2.1 GHz | 25 W / 3.1 GHz | 3.3 GHz | 1200 MHz | 2013-01-20 | $346 | ||||
3667U | 14 W / ? GHz | 17 W / 2.0 GHz | 25 W / 3.0 GHz | 3.2 GHz | 1150 MHz | 2012-06-03 | ||||||
3537U | 14 W / ? GHz | 25 W / 2.9 GHz | 3.1 GHz | 1200 MHz | 2013-01-20 | |||||||
3555LE | — | 25 W / 2.5 GHz | — | 3.2 GHz | 550 MHz | 1000 MHz | 2012-06-03 | $360 | ||||
3540M | 35 W / 3.0 GHz | 3.7 GHz | 650 MHz | 1300 MHz | 2013-01-20 | $346 | ||||||
3525M | 35 W / 2.9 GHz | 3.6 GHz | 1350 MHz | Q3 2012 | ||||||||
3520M | 1250 MHz | 2012-06-03 | $346 | |||||||||
3517U | 14 W / ? GHz | 17 W / 1.9 GHz | 25 W / 2.8 GHz | 3.0 GHz | 350 MHz | 1150 MHz | ||||||
3517UE | 14 W / ? GHz | 17 W / 1.7 GHz | 25 W / 2.6 GHz | 2.8 GHz | 1000 MHz | $330 | ||||||
Core i5 | 3610ME | — | 35 W / 2.7 GHz | — | 3.3 GHz | 650 MHz | 950 MHz | 3 MB | $276 | |||
3439Y | 7 W / ? GHz | 10 W / ? GHz | 13 W / 1.5 GHz | 2.3 GHz | 350 MHz | 850 MHz | 2013-01-07 | $250 | ||||
3437U | — | 14 W / ? GHz | 17 W / 1.9 GHz | 25 W / 2.4 GHz | 2.9 GHz | 650 MHz | 1200 MHz | 2013-01-20 | $225 | |||
3427U | 14 W / ? GHz | 17 W / 1.8 GHz | 25 W / 2.3 GHz | 2.8 GHz | 350 MHz | 1150 MHz | 2012-06-03 | |||||
3380M | — | 35 W / 2.9 GHz | — | 3.6 GHz | 650 MHz | 1250 MHz | 2013-01-20 | $266 | ||||
3365M | 35 W / 2.8 GHz | 3.5 GHz | 1350 MHz | Q3 2012 | ||||||||
3360M | 1200 MHz | 2012-06-03 | $266 | |||||||||
3340M | 35 W / 2.7 GHz | 3.4 GHz | 1250 MHz | 2013-01-20 | $225 | |||||||
3339Y | 7 W / ? GHz | 10 W / ? GHz | 13 W / 1.5 GHz | 2.0 GHz | 350 MHz | 850 MHz | 2013-01-07 | $250 | ||||
3337U | — | 14 W / ? GHz | 17 W / 1.8 GHz | 2.7 GHz | 350 MHz | 1100 MHz | 2013-01-20 | $225 | ||||
3320M | — | 35 W / 2.6 GHz | 3.3 GHz | 650 MHz | 1200 MHz | 2012-06-03 | ||||||
3317U | 14 W / ? GHz | 17 W / 1.7 GHz | 2.6 GHz | 350 MHz | 1050 MHz | |||||||
3230M | — | 35 W / 2.6 GHz | 3.2 GHz | 650 MHz | 1100 MHz | 2013-01-20 | ||||||
3210M | 35 W / 2.5 GHz | 3.1 GHz | 2012-06-03 | |||||||||
Core i3 | 3229Y | 7 W / ? GHz | 10 W / ? GHz | 13 W / 1.4 GHz | — | 350 MHz | 850 MHz | 2013-01-07 | $250 | |||
3227U | — | 14 W / ? GHz | 17 W / 1.9 GHz | 1100 MHz | 2013-01-20 | $225 | ||||||
3217U | 14 W / ? GHz | 17 W / 1.8 GHz | 1050 MHz | 2012-06-24 | ||||||||
3217UE | 14 W / ? GHz | 17 W / 1.6 GHz | 900 MHz | July 2013 | $261 | |||||||
3130M | — | 35 W / 2.6 GHz | 650 MHz | 1100 MHz | 2013-01-20 | $225 | ||||||
3120M | 35 W / 2.5 GHz | 2012-09-30 | ||||||||||
3120ME | 35 W / 2.4 GHz | 900 MHz | July 2013 | |||||||||
3110M | 1000 MHz | 2012-06-24 | ||||||||||
3115C | 25 W / 2.5 GHz | — | 4 MB | 2013-09-10 | $241 | |||||||
Pentium | B925C | 15 W / 2.0 GHz | OEM | |||||||||
A1018 | 2 (2) | 35 W / 2.1 GHz | 650 MHz | 1000 MHz | 1 MB | June 2013 | $86 (India) | |||||
2030M | 35 W / 2.5 GHz | 1100 MHz | 2 MB | 2013-01-20 | $134 | |||||||
2020M | 35 W / 2.4 GHz | 2012-09-30 | ||||||||||
2127U | 17 W / 1.9 GHz | 350 MHz | 2013-06-09 | |||||||||
2117U | 17 W / 1.8 GHz | 1000 MHz | 2012-09-30 | |||||||||
2129Y | 7 W | 10 W / 1.1 GHz | 850 MHz | 2013-01-07 | $150 | |||||||
Celeron | 1019Y | 7 W | 10 W / 1.0 GHz | 800 MHz | April 2013 | $153 | ||||||
1020E | — | 35 W / 2.2 GHz | 650 MHz | 1000 MHz | 2013-01-20 | $86 | ||||||
1020M | 35 W / 2.1 GHz | |||||||||||
1005M | 35 W / 1.9 GHz | 2013-06-09 | ||||||||||
1000M | 35 W / 1.8 GHz | 2013-01-20 | ||||||||||
1037U | 17 W / 1.8 GHz | 350 MHz | ||||||||||
1017U | 17 W / 1.6 GHz | 2013-06-09 | ||||||||||
1007U | 17 W / 1.5 GHz | 2013-01-20 | ||||||||||
1047UE | 17 W / 1.4 GHz | 900 MHz | $134 | |||||||||
927UE | 1 (1) | 17 W / 1.5 GHz | 1 MB | $107 |
Suffixes to denote:
- Y – Fanless Ultrabook: Dual-core extreme ultra-low power (TDP 13 W, SDP 7 W)
- U – Fanned Ultrabook: Dual-core ultra-low power (TDP 17 W)
- C – Communications
- M – Dual-core
- QM – Quad-core
- XM – Quad-core extreme performance (adjustable CPU ratio with no ratio limit)
- ME – Dual-core embedded
Roadmap[edit]
Intel demonstrated the Haswell architecture in September 2011, which began release in 2013 as the successor to Sandy Bridge and Ivy Bridge.[55]
Fixes[edit]
Microsoft has released a microcode update for selected Sandy Bridge and Ivy Bridge CPUs for Windows 7 and up that addresses stability issues. The update, however, negatively impacts Intel G3258 and 4010U CPU models.[56][57][58]
See also[edit]
Notes[edit]
- ^ Jump up to: a b c Transistor counts for M-2, H-2 and HM-4 were determined by a comparison of transistor counts in Sandy Bridge and HE-4. Performing a comparative analysis gave counts of 108 million transistors per core, 67 million transistors per 1 MB of L3 cache, 88 million transistors for the memory controller and other chip features, and roughly 21 million transistors for each execution unit inside the Intel HD 4000. All this is an attempt to determine the transistor count mathematically, and is not backed by any sources. Thus, these transistor counts may be inaccurate.
References[edit]
- ^ "Origin of a Codename: Ivy Bridge". Intel Free Press. 19 April 2012. Archived from the original on 16 January 2014. Retrieved 16 January 2014.
- ^ "Ivy Bridge Quad-Core to Have 77W TDP, Intel Plans for LGA1155 Ivy Bridge Entry". techPowerUp. October 18, 2011. Retrieved October 12, 2013.
- ^ Anand Lal Shimpi (June 1, 2011). "Correction: Ivy Bridge and Thunderbolt – Featured, not Integrated". AnandTech. Retrieved November 11, 2011.
- ^ Gruener, Wolfgang (October 19, 2011). "Intel to Sell Ivy Bridge Late in Q4 2011". Tom's Hardware. Retrieved November 11, 2011.
- ^ Demerjian, Charlie (April 23, 2012). "Intel launches Ivy Bridge amid crushing marketing buzzwords". SemiAccurate. Retrieved May 25, 2012.
- ^ Walton, Jarred (September 7, 2012). "Intel's Pentium and Core i3 Desktop Ivy Bridge CPUs Arrive". AnandTech. Retrieved October 12, 2013.
- ^ "Does My Intel® Processor Support Microsoft Windows® 10?". Intel. Retrieved May 21, 2019.
- ^ "Intel Israel: Innovation as a Leadership Strategy". Intel. Retrieved May 6, 2014.
- ^ Webster, Clive (October 10, 2011). "Ivy Bridge Media Upgrades and Security Features". Bit-Tech. Retrieved December 22, 2013.
- ^ Shvets, Gennadiy (November 27, 2011). "Ivy Bridge desktop CPU lineup details". CPU-World. Retrieved December 22, 2013.
- ^ "Intel Reinvents Transistors Using New 3-D structure". Intel Newsroom. May 4, 2011. Retrieved May 4, 2011.
- ^ Taylor, Greg; Cox, George (September 2011). "Behind Intel's New Random-Number Generator". Spectrum. IEEE. Archived from the original on July 1, 2019. Retrieved December 11, 2011.
- ^ "Bull Mountain Software Implementation Guide". Intel. June 12, 2011. Retrieved December 4, 2011.
- ^ "DirectXMath: F16C and FMA". Microsoft. Retrieved March 21, 2018.
- ^ Hamburg, Michael (December 11, 2012). "Understanding Intel's Ivy Bridge Random Number Generator". Electronic Design. Retrieved March 21, 2018.
- ^ Jump up to: a b Shimpi, Anand Lal (September 13, 2011). "Ivy Bridge Overclocking: Ratio Changes Without Reboot, More Ratios and DDR3-2800". AnandTech. Retrieved February 21, 2012.
- ^ Karmehed, Anton (May 31, 2011). "Intel Ivy Bridge gets variable TDP and Thunderbolt". NHW. Archived from the original on May 25, 2012. Retrieved December 11, 2011.
- ^ Shimpi, Anand Lal (October 5, 2012). "Intel's Haswell Architecture Analyzed". AnandTech. Retrieved October 20, 2013.
- ^ "Intel 64 and IA-32 Architectures Optimization Reference Manual". Intel. Retrieved October 12, 2013.
- ^ "Intel 64 and IA-32 Architectures Optimization Reference Manual" (PDF). Intel. Retrieved October 12, 2013.
- ^ Jump up to: a b Vättö, Kristian (May 6, 2011). "Intel's Roadmap: Ivy Bridge, Panther Point, and SSDs". AnandTech. Retrieved November 11, 2011.
- ^ "Release Notes Driver Version: 15.33.53.5161" (PDF). intel. October 23, 2020. Retrieved November 27, 2022.
- ^ Larabel, Michael (April 14, 2017). "Intel Ivy Bridge Gets OpenGL 4.2 on Mesa 17.1". Phoronix. Retrieved October 12, 2017.
- ^ Nilsson, LG (March 31, 2012). "Most desktop Ivy Bridge systems won't support three displays". VR-Zone. Archived from the original on October 17, 2012. Retrieved October 17, 2012.
- ^ Delahunty, James (March 30, 2011). "Intel Ivy Bridge chips feature PCI Express 3.0". After Dawn News. Retrieved November 11, 2011.
- ^ Angelini, Chris (September 3, 2013). "Intel Core i7-4960X Review: Ivy Bridge-E, Benchmarked – Ivy Bridge-E: Core i7-4960X Gets Tested". Tom's Hardware. Retrieved October 12, 2013.
- ^ Wasson, Scott (September 3, 2013). "Intel's Core 4960X processor reviewed". Tech Report. Retrieved October 12, 2013.
- ^ Shimpi, Anand Lal (March 6, 2012). "The Ivy Bridge Preview: Core i7 3770K Tested". AnandTech. Retrieved May 25, 2012.
- ^ Jump up to: a b Taylor, Billy (May 2, 2012). "Intel's Ivy Bridge Hotter Than Sandy Bridge When Overclocked". Tom's Hardware. Retrieved November 27, 2022.
- ^ Jump up to: a b c d "Ivy Bridge proven to suffer from poor thermal grease by". VR-Zone. May 11, 2012. Archived from the original on March 4, 2016. Retrieved May 25, 2012.
- ^ "TIM is Behind Ivy Bridge Temperatures After All". TechPowerUp. May 12, 2012. Retrieved November 27, 2022.
- ^ Jump up to: a b "Intel to Officially Enable Better Overclocking in Haswell". Softpedia News. September 20, 2012. Retrieved October 12, 2013.
- ^ Hagedoom, Hilbert (June 26, 2013). "Intel Ivy Bridge E has Solder Under Its IHS". The Guru of 3D. Retrieved November 27, 2022.
- ^ Hagan, Trace (May 11, 2012). "Ivy Bridge's heat problem is indeed caused by Intel's TIM choice". TweakTown. US. Retrieved October 12, 2013.
- ^ WhiteFireDragon (August 3, 2012). "Fixing Haswell and Ivy Bridge CPU temps: IHS removal". YouTube. Retrieved November 8, 2013.
- ^ Latif, Lawrence (April 30, 2012). "Intel admits Ivy Bridge chips run hotter". The Inquirer. Archived from the original on May 5, 2012. Retrieved May 25, 2012.
{{cite web}}
: CS1 maint: unfit URL (link) - ^ Jump up to: a b c d "Mobile 3rd Generation Intel Core Processor Family Datasheet" (PDF). Intel. April 23, 2012.
- ^ Shimpi, Anand Lal; Smith, Ryan (April 23, 2012). "The Intel Ivy Bridge (Core i7 3770K) Review". AnandTech. Retrieved May 25, 2012.
- ^ Jump up to: a b Goto, Hiroshige (February 22, 2012). "Ivy Bridge Modular Design". PC Watch (in Japanese). Retrieved December 22, 2013.
- ^ Shimpi, Anand Lal (September 14, 2011). "Ivy Bridge: 1.4B Transistors". AnandTech. Retrieved November 27, 2022.
- ^ Crowthers, Doug (August 8, 2012). "Intel's Ivy Bridge-E set for Q3 2013, Shows Leaked Slide". Tom's Hardware. Retrieved October 12, 2013.
- ^ Prickett Morgan, Timothy (September 10, 2013). "Intel carves up Xeon E5-2600 v2 chips for two-socket boxes". The Register. Retrieved September 13, 2013.
- ^ "Intel Introduces Highly Versatile Datacenter Processor Family Architected for New Era of Services". Intel Newsroom. September 10, 2013. Retrieved September 13, 2013.
- ^ Hearn, Mark (October 17, 2012). "Intel roadmap reveals 10-core Xeon E5-2600 V2 Ivy Bridge CPU". Engadget. Retrieved January 3, 2013.
- ^ Jump up to: a b S., Mike (January 3, 2013). "Leak: Enthusiast-Grade IB-E CPUs Slated for Q3 along with SB-E Core i7-3980X 8 Core CPU for Q2". Legit Reviews. Retrieved January 23, 2013. (citing an original post by Hassan Mujtaba on the same website)
- ^ Gasior, Geoff (April 1, 2013). "Leaked slide outs Ivy Bridge-E models". Tech Report. Retrieved November 27, 2022.
- ^ Shvets, Gennadiy (March 30, 2013). "Intel Ivy Bridge-E extreme CPUs to launch in Q3 2013". CPU World. Retrieved March 30, 2013.
- ^ Ryan, Thomas (January 10, 2014). "Intel Announces the Xeon E5-2400 v2 Series at CES". SemiAccurate. Retrieved January 21, 2014.
- ^ "Intel extends Xeon E5 server chip family with E5-2400 v2 line-up". V3. Retrieved January 21, 2014.
- ^ Jump up to: a b c Cyril Kowaliski (August 1, 2013). "Ivy Bridge-E processors to start at $310".
- ^ "Intel Core i7-3770K Processor (8M Cache, up to 3.90 GHz)". Ark.intel.com. Retrieved May 25, 2012.
- ^ Jump up to: a b "Intel details 14 dual-core Ivy Bridge processors ahead of Computex". Retrieved September 30, 2012.
- ^ "Intel makes custom Xeons for Oracle". Retrieved June 25, 2014.
- ^ Cunningham, Andrew (January 14, 2013). "The Technical Details Behind Intel's 7 Watt Ivy Bridge CPUs". Ars Technica. Retrieved January 14, 2013.
- ^ Crothers, Brooke (September 14, 2011). "Haswell chip completes Ultrabook 'revolution'". The Circuits Blog. CNET.com. Retrieved November 11, 2011.
- ^ "June 2015 Intel CPU microcode update for Windows". Retrieved November 7, 2020.
- ^ "Windows 7: June 2015 microcode update for Intel processors in Windows". Retrieved November 7, 2020.
- ^ "Windows update KB3064209 (G3258 & 4010U)". Retrieved November 7, 2020.
External links[edit]
- Angelini, Chris (April 23, 2012). "Intel Core i7-3770K Review: A Small Step Up For Ivy Bridge". Tom's Hardware.
- Intel (May 4, 2011). "Video Animation: Mark Bohr Gets Small: 22 nm Explained". YouTube. Retrieved November 11, 2011.
- Kanter, David (April 22, 2012). "Intel's Ivy Bridge Graphics Architecture". Real World Tech. Retrieved April 24, 2012.
- Gavrichenkov, Ilya (September 19, 2012). "Roundup: Intel Core i5 Processors with Ivy Bridge Microarchitecture". X-bit Labs. Archived from the original on September 23, 2012.
- Gavrichenkov, Ilya (September 25, 2012). "Roundup: Intel Core i3 Processors with Ivy Bridge Microarchitecture". X-bit Labs. Archived from the original on September 26, 2012.
- "Memory Configuration Guide for X9 Series DP Motherboards – Revised Ivy Bridge Update (Socket R & B2)" (PDF). Super Micro Computer, Inc. January 2014. Retrieved November 27, 2022.