Rational root theorem
In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation
The theorem states that each rational solution x = p⁄q, written in lowest terms so that p and q are relatively prime, satisfies:
- p is an integer factor of the constant term a0, and
- q is an integer factor of the leading coefficient an.
The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is an = 1.
Application[edit]
The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (x – r) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree whose roots are also roots of the original polynomial.
Cubic equation[edit]
The general cubic equation
Proofs[edit]
Elementary proof[edit]
Let with
Suppose P(p/q) = 0 for some coprime p, q ∈ ℤ:
To clear denominators, multiply both sides by qn:
Shifting the a0 term to the right side and factoring out p on the left side produces:
Thus, p divides a0qn. But p is coprime to q and therefore to qn, so by Euclid's lemma p must divide the remaining factor a0.
On the other hand, shifting the an term to the right side and factoring out q on the left side produces:
Reasoning as before, it follows that q divides an.[1]
Proof using Gauss's lemma[edit]
Should there be a nontrivial factor dividing all the coefficients of the polynomial, then one can divide by the greatest common divisor of the coefficients so as to obtain a primitive polynomial in the sense of Gauss's lemma; this does not alter the set of rational roots and only strengthens the divisibility conditions. That lemma says that if the polynomial factors in Q[X], then it also factors in Z[X] as a product of primitive polynomials. Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime. But any multiple in Z[X] of qx − p has leading term divisible by q and constant term divisible by p, which proves the statement. This argument shows that more generally, any irreducible factor of P can be supposed to have integer coefficients, and leading and constant coefficients dividing the corresponding coefficients of P.
Examples[edit]
First[edit]
In the polynomial
Second[edit]
In the polynomial
Third[edit]
Every rational root of the polynomial
This process may be made more efficient: if P(r) ≠ 0, it can be used to shorten the list of remaining candidates.[2] For example, x = 1 does not work, as P(1) = 1. Substituting x = 1 + t yields a polynomial in t with constant term P(1) = 1, while the coefficient of t3 remains the same as the coefficient of x3. Applying the rational root theorem thus yields the possible roots , so that
True roots must occur on both lists, so list of rational root candidates has shrunk to just x = 2 and x = 2/3.
If k ≥ 1 rational roots are found, Horner's method will also yield a polynomial of degree n − k whose roots, together with the rational roots, are exactly the roots of the original polynomial. If none of the candidates is a solution, there can be no rational solution.
See also[edit]
- Fundamental theorem of algebra
- Integrally closed domain
- Descartes' rule of signs
- Gauss–Lucas theorem
- Properties of polynomial roots
- Content (algebra)
- Eisenstein's criterion
Notes[edit]
- ^ Arnold, D.; Arnold, G. (1993). Four unit mathematics. Edward Arnold. pp. 120–121. ISBN 0-340-54335-3.
- ^ King, Jeremy D. (November 2006). "Integer roots of polynomials". Mathematical Gazette. 90: 455–456. doi:10.1017/S0025557200180295.
References[edit]
- Miller, Charles D.; Lial, Margaret L.; Schneider, David I. (1990). Fundamentals of College Algebra (3rd ed.). Scott & Foresman/Little & Brown Higher Education. pp. 216–221. ISBN 0-673-38638-4.
- Jones, Phillip S.; Bedient, Jack D. (1998). The historical roots of elementary mathematics. Dover Courier Publications. pp. 116–117. ISBN 0-486-25563-8.
- Larson, Ron (2007). Calculus: An Applied Approach. Cengage Learning. pp. 23–24. ISBN 978-0-618-95825-2.
External links[edit]
- Weisstein, Eric W. "Rational Zero Theorem". MathWorld.
- RationalRootTheorem at PlanetMath
- Another proof that nth roots of integers are irrational, except for perfect nth powers by Scott E. Brodie
- The Rational Roots Test at purplemath.com