Stratified space
This article relies largely or entirely on a single source. (May 2024) |
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (May 2024) |
In mathematics, especially in topology, a stratified space is a topological space that admits or is equipped with a stratification, a decomposition into subspaces, which are nice in some sense (e.g., smooth or flat[1]).
A basic example is a subset of a smooth manifold that admits a Whitney stratification. But there is also an abstract stratified space such as a Thom–Mather stratified space.
On a stratified space, a constructible sheaf can be defined as a sheaf that is locally constant on each stratum.
Among the several ideals, Grothendieck's Esquisse d’un programme considers (or proposes) a stratified space with what he calls the tame topology.
A stratified space in the sense of Mather
[edit]Mather gives the following definition of a stratified space. A prestratification on a topological space X is a partition of X into subsets (called strata) such that (a) each stratum is locally closed, (b) it is locally finite and (c) (axiom of frontier) if two strata A, B are such that the closure of A intersects B, then B lies in the closure of A. A stratification on X is a rule that assigns to a point x in X a set germ at x of a closed subset of X that satisfies the following axiom: for each point x in X, there exists a neighborhood U of x and a prestratification of U such that for each y in U, is the set germ at y of the stratum of the prestratification on U containing y.[citation needed]
A stratified space is then a topological space equipped with a stratification.[citation needed]
Pseudomanifold
[edit]In the MacPherson's stratified pseudomanifolds; the strata are the differences Xi+i-Xi between sets in the filtration. There is also a local conical condition; there must be an almost smooth atlas where locally each little open set looks like the product of two factors Rnx c(L); a euclidean factor and the topological cone of a space L. Classically, here is the point where the definitions turns to be obscure, since L is asked to be a stratified pseudomanifold. The logical problem is avoided by an inductive trick which makes different the objects L and X.[citation needed]
The changes of charts or cocycles have no conditions in the MacPherson's original context. Pflaum asks them to be smooth, while in the Thom-Mather context they must preserve the above decomposition, they have to be smooth in the Euclidean factor and preserve the conical radium.[citation needed]
See also
[edit]Footnotes
[edit]References
[edit]- Appendix 1 of R. MacPherson, Intersection homology and perverse sheaves, 1990 notes
- J. Mather, Stratifications and Mappings, Dynamical Systems, Proceedings of a Symposium Held at the University of Bahia, Salvador, Brasil, July 26–August 14, 1971, 1973, pages 195–232.
- Markus J. Pflaum, Analytic and Geometric Study of Stratified Spaces: Contributions to Analytic and Geometric Aspects (Lecture Notes in Mathematics, 1768); Publisher, Springer;