Jump to content

List of exoplanet extremes

From Wikipedia, the free encyclopedia

The following are lists of extremes among the known exoplanets. The properties listed here are those for which values are known reliably. It is important to note that the study of exoplanets is one of the most dynamic emerging fields of science, and these values may change wildly as new discoveries are made.

Extremes from Earth's viewpoint

[edit]
Title Planet Star Data Notes
Most distant discovered SWEEPS-11 / SWEEPS-04 SWEEPS J175902.67−291153.5 / SWEEPS J175853.92−291120.6 27,710 light-years[1] Several candidate extragalactic planets have been detected. Assuming the largest distance value from the microlensing light-curve, the planet OGLE-2017-BLG-0364Lb might be more distant, at around 32,600 light-years (10,000 pc).[2]

The most distant potentially habitable planet confirmed is Kepler-1606b, at 2,870 light-years distant,[3] although the unconfirmed planet KOI-5889.01 is over 5,000 light-years distant.

On 31 March 2022, K2-2016-BLG-0005Lb was reported to be the most distant exoplanet discovered by the Kepler telescope, at 17,000 light-years away.[4]

Least distant Proxima Centauri b, c and d Proxima Centauri 4.25 light-years Proxima Centauri b and d are the closest rocky exoplanets, b is the closest potentially habitable exoplanet known, and c is the closest mini-Neptune and potentially ringed planet. As Proxima Centauri is the closest star to the Sun (and will stay so for the next 25,000 years), this is an absolute record.
Most distant directly visible CT Chamaeleontis b CT Chamaeleontis 622 light-years[5] The disputed planet candidate CVSO 30 c may be more distant, at 1,200 light-years.
Closest directly visible Epsilon Indi Ab Epsilon Indi 12.05 light-years COCONUTS-2b at 35.5 light-years is the next closest directly visible.[5]

Proxima Centauri c (confirmed in 2020 using archival Hubble data from 1995+) may have been directly imaged.[6]

Star with the brightest apparent magnitude with a planet Alpha Arietis b Hamal[5][a] Apparent magnitude is 2.005 Alpha Centauri A (apparent magnitude 0.01) has an planet candidate. The evidence of planets around Vega with an apparent magnitude of 0.03 is strongly suggested by circumstellar disks surrounding it.[7] As of 2021, a candidate planet around Vega has been detected.[8]

Aldebaran (apparent magnitude varies between 0.75 and 0.95) was suspected to have a candidate planet, however later studies found the existence of the planet inconclusive.[9] Pollux (apparent magnitude 1.14[10]) has a reported planet (Thestias), but the existence of this planet has been questioned.[11][12]Mirfak (α Per, apparent magnitude 1.806) was claimed to have an orbiting planet, whose existence has likewise been disputed.[13]

A 2023 study detected 10 luminous point sources around the primary star of Fomalhaut system (apparent magnitude = 1.16), of which the last source may be either an unrelated background object or a planetary-mass companion.[14]

Star with the faintest apparent magnitude with a planet MOA-bin-29Lb MOA-bin-29L Apparent magnitude is 44.61[5]
Largest angular distance separation from its host star COCONUTS-2b COCONUTS-2 594 arcseconds[15]

Planetary characteristics

[edit]
Title Planet Star Data Notes
Least massive PSR B1257+12 b (Draugr) PSR B1257+12 (Lich) 0.020±0.002 M🜨[5] The extrasolar planetesimal WD 1145+017 b is less massive, at 0.00067 ME.[15]
Most massive The most massive planet is difficult to define due to the blurry line between planets and brown dwarfs. If the borderline is defined as the deuterium fusion threshold (roughly 13 MJ at solar metallicity[16][b]), the most massive planets are those with true mass closest to that cutoff; if planets and brown dwarfs are differentiated based on formation, their mass ranges overlap.[17][18]: 62  A candidate for the most massive object that formed in a protoplanetary disk is HD 206893 b, at about 28 MJ. Both this object and its 13 MJ sibling HD 206893 c fuse deuterium.[19][20]
Largest radius DH Tauri b DH Tauri 2.6±0.72.7±0.8 RJ[21] Next largest is ROXs 42Bb with 2.15[22]2.83±0.01[23] RJ, very closely followed by PDS 70 b with 2.09+0.23
−0.31
 – 2.72+0.15
−0.17
RJ.[24]

Proplyd 133-353 is larger at 7.4±0.3 – 8.0±1.1 RJ.[25][c] It might be considered as a sub-brown dwarf or a rogue planet, with a photoevaporating disk.

HAT-P-67b has the largest accurately measured radius, at 2.085+0.096
−0.071
 RJ
.[26][27]

Smallest radius Kepler-37b Kepler-37 0.296±0.037 R🜨[5] The extrasolar planetesimals SDSS J1228+1040 b[28] and WD 1145+017 b are smaller.
Most dense TOI-4603b HD 245134 14.1+1.7
−1.6
g/cm3 [29]
TOI-4603b has a mass of 12.89+0.58
−0.57
MJ and a radius of 1.042+0.038
−0.035
RJ.[30]

KELT-1b is denser, with 22.1+5.62
−9.16
g/cm3.[31] But, with a mass of 27.23 MJ, it is likely a brown dwarf. Kepler-131c might be more dense at 77.7+55
−55
g/cm3,[32] but the value is highly uncertain.

Least dense Kepler-51c, b and/or possibly d[33] Kepler-51[33] ~ 0.03 g/cm3[33] The densities of Kepler-51 b and c have been constrained to be below 0.05 g/cm3 (expected value 0.03 g/cm3 for each). The density of Kepler-51d is determined to be 0.046 ± 0.009 g/cm3.[33]
Hottest (irradiated hot Jupiter) KELT-9b KELT-9 4,050±180 K[5](3777 °C) The unconfirmed planets Kepler-70b and Kepler-70c may be hotter, both at >6,800 K.[34]
Hottest (self-luminous) GQ Lupi b GQ Lupi 2,650±100 K[35](2377 °C) Depending on its mass value, GQ Lupi b may be either a massive planet or a brown dwarf.[36]
Coldest OGLE-2005-BLG-390Lb OGLE-2005-BLG-390L 50 K (−223.2 °C)[37][d] The disputed planet Proxima Centauri c may be cooler, at 39 K (−234.2 °C).[38]
Highest albedo LTT 9779 b LTT 9779 0.8[39] For comparison, Earth is 0.3 and Venus is 0.76.
Lowest albedo TrES-2b GSC 03549-02811 Geometric albedo < 1%[40] Best-fit model for albedo gives 0.04% (0.0004).[34]
Youngest CHXR 73 b CHXR 73 2 Myr[5] The free-floating planet Proplyd 133-353 is younger, at 0.5 Myr.[41][42] However, as a free-floating planet, it does not meet the IAU's working definition of a planet.[43]

2MASS J04414489+2301513 b is listed as the youngest planet in the NASA Exoplanet Archive, at an age of 1 Myr,[5] but fails the mass ratio criterion of the IAU working definition of an exoplanet; the mass ratio with the primary is smaller than ~1/25[43] and 'more likely to have been produced by cloud core fragmentation' (like a star).[44]

K2-33b is the youngest transiting planet, at an age of 9.3 Myr.[45]

Oldest PSR B1620-26 b PSR B1620-26 11.2–12.7 Gyr[46] The currently accepted age of the universe is around 13.8 billion years.

Orbital characteristics

[edit]
Title Planet Star Data Notes
Longest orbital period
(Longest year)
Gliese 900 b (CW2335+0142) Gliese 900 1.4 million years[47] COCONUTS-2b previously held this record at 1,100,000 years.
Shortest orbital period
(Shortest year)
PSR J1719-1438 b PSR J1719-1438 2.17695 h (131 minutes)[48] A substellar object announced around the pulsar SWIFT J1756.9−2508 may have a shorter orbital period of under an hour, around 54 minutes.[49] M62H b has an orbit almost exactly 1 hour longer.[50] A planetary-mass object orbiting the white dwarf GP Comae Berenices has an even shorter orbital period of 46 minutes and is sometimes listed as an exoplanet.[51] However, it is more likely the remaining core of a former white dwarf being highly disrupted.[52]

K2-137b has the shortest orbit around a main-sequence star (an M dwarf) at 4.31 hours.[53]

Largest orbital separation Gliese 900 b (CW2335+0142) Gliese 900 12,000 AU[54][5]
Smallest orbital separation PSR J1719-1438 b PSR J1719−1438 0.0044 AU (658,230 km) [55]
Most eccentric orbit HD 20782 b[56] HD 20782 0.956±0.004 [57] Record among confirmed planets. The disproven planet candidate at VB 10 was thought to have a higher eccentricity of 0.98.[58] HD 80606 b previously held this record at 0.93226+0.00064
−0.00069
.
Highest orbital inclination HD 204313 e HD 204313 176.092°+0.963°
−2.122°
[59][60]
Lowest orbital inclination HD 331093 b HD 331093 >0.3704° [61][60] HD 43197 c has the lowest orbital inclination that is not a lower limit, of 11.42°+5.388°
−3.07°
.[60]
Largest orbit around a single star COCONUTS-2b L 34-26 7,506 AU Next largest are 2MASS J2126–8140 with 6,900 AU and HD 106906 b[62] with ~738 AU.

UCAC4 328-061594 b has an even longer orbital separation (19,000 AU), although its mass (21 MJ)[5][54] is higher than the deuterium burning limit (13 MJ).

Smallest orbit around binary star Kepler-47b Kepler-47AB 0.2877+0.0014
−0.0011
 AU
[5]
[63]
Smallest ratio of semi-major axis of a planet orbit to binary star orbit Kepler-16b Kepler-16AB 3.14 ± 0.01 [64]
Largest orbit around binary star SR 12 (AB) c SR 12 AB ≈1100 AU[65] SR 12 (AB) c has a mass of 0.013±0.007 M.[65]

ROXs 42B (AB) b is lower in mass at 9.0+6
−3
MJ, however also in projected separation of ≈150 AU.[66]

DT Virginis c, also known as Ross 458 (AB) c, at a projected separation of ≈1200 AU, with several mass estimates below the deuterium burning limit, has a latest mass determination of 27±4 MJ.[67]

Largest orbit around a single star in a multiple star system ROXs 12 b ROXs 12 210±20 AU[5]
Largest separation between binary stars with a circumbinary planet SR 12 (AB) c SR 12 AB ≈26 AU[65] SR 12 (AB) c has a mass of 0.013±0.007 M at a projected separation of ≈1100 AU.[65]

FW Tauri b orbits at a projected separation of 330±30 AU around a ≈11 AU separated binary.[68] It was shown to be more likely a 0.1 M star surrounded by a protoplanetary disk than a planetary-mass companion.[69]

Largest orbit around three stars Gliese 900 b (CW2335+0142) Gliese 900 12,000 AU[54][5]
Closest orbit between stars with a planet orbiting one of the stars OGLE-2013-BLG-0341LBb OGLE-2013-BLG-0341LB ~12–17 AU
(10 or 14 AU projected distance)[70]
OGLE-2013-BLG-0341L b's semi-major axis is 0.7 AU.[70]
Smallest semi-major axis ratio between consecutive planets Kepler-36b and Kepler-36c Kepler-36 11% Kepler-36b and c have semi-major axes of 0.1153 AU and 0.1283 AU, respectively, c is 11% further from star than b.

Stellar characteristics

[edit]
Title Planet Star Data Notes
Highest metallicity HD 126614 Ab HD 126614 A +0.56 dex Located in a triple star system.
Lowest metallicity K2-344b K2-344 −0.95±0.02 dex[5] BD+20°2457 may be the lowest-metallicity planet host ([Fe/H]=−1.00); however, the proposed planetary system is dynamically unstable.[71]

Planets were announced around even the extremely low-metallicity stars HIP 13044 and HIP 11952; however, these claims have since been disproven.[72]

A brown dwarf or massive planetary companion was announced around the population II star HE 1523-0901, whose metallicity is −2.65±0.22 dex.[73] While the inclination of the companion is not known, if its orbit is nearly face-on, it would be sufficiently massive to become a red dwarf instead.[74]

Highest stellar mass Mu2 Scorpii b Pipirima 9.1±0.3 M[75] M51-ULS-1b, listed as a candidate planet with 4 sigma confidence, may be the planet with the highest-mass host star.[76] The stars R126 (HD 37974), R66 (HD 268835) and HH 1177 in the Large Magellanic Cloud have masses of 70, 30 and 15 solar masses and have dust discs[77] but no planets have been detected yet.
Lowest stellar mass (main sequence) KMT-2021-BLG-1554Lb KMT-2021-BLG-1554L 0.08+0.013
−0.014
 M
[60]
The mass of this star is near to the hydrogen burning limit.

KMT-2016-BLG-2142L have a lower mass, of 0.073+0.117
−0.04
 M
, but the value is highly uncertain.[60]

Lowest stellar mass (brown dwarf) 2MASS J1119-1137 B 2MASS J1119–1137 A 0.0033 M The system 2MASS J1119-1137 AB is a pair of binary rogue planets approximately 3.7 MJup each.[78]
Largest stellar radius HD 208527 b HD 208527 51.1±8.3 R[5] Other stars, such as HD 18438 , Mirach and Delta Virginis are larger, but their substellar companions are more massive than the deuterium burning limit (13 MJ), and thus might be brown dwarfs rather than exoplanets.[5]

R Leonis (320-350 R)[79] has a candidate planet. It is a Mira variable. R Fornacis (585 R)[e], another Mira variable, also has a candidate planet.[80][81]

The stars R126 and R66 in the Large Magellanic Cloud have radius of 78 R and 131 R[82] and have dust discs but no planets have been detected yet.

Smallest stellar radius (main sequence star) TRAPPIST-1 planets TRAPPIST-1 0.1192±0.0013 R[83] VB 10 (0.102 R)[84] has a disproven planet candidate.
Smallest stellar radius (brown dwarf) 2M 0746+20 b[85] 2M 0746+20 0.089 (± 0.003) R Planet's mass is very uncertain at 30.0 (± 25.0) MJup.
Smallest stellar radius (stellar remnant) PSR B0943+10 b and c; Draugr, Poltergeist and Phobetor PSR B0943+10 and Lich 0.000007187 R (5 km)[86] [87][f] Both stars (PSR B0943+10 and PSR B1257+12) have almost the same size.

PSR B0943+10 may be a quark star. If so, its radius is predicted to be 2.6 km.[86]

Highest stellar luminosity Beta Cancri b Beta Cancri 794 L[60] This is the most luminous star to host a planet that is not a potential brown dwarf.[60]

The star Mirfak, whose luminosity is 3780 L,[88] was claimed to have an orbiting planet with a minimum mass of 6.6 ± 0.2 Jupiter masses. However, the existence of the planet is doubtful.[13] R Leonis (at 3537 L)[79] has a candidate planet. R Fornacis (at 5800 L)[80] also has a candidate planet. The stars R126 and R66 in the Large Magellanic Cloud have luminosity of 1400000 L and 320000 L[82] and have dust discs but no planets have been detected yet.

Lowest stellar luminosity (main sequence star) TRAPPIST-1 planets TRAPPIST-1 0.0005495 L [89][60]
Hottest star with a planet NSVS 14256825 b NSVS 14256825 40,000 K[90] NN Serpentis is hotter, with a temperature of 57,000 K,[5] but the existence of its planets is disputed.[91]
Hottest normal star with a planet[g] b Centauri b b Centauri 18,310±320 K[92] V921 Scorpii b orbits a hotter star, at 30,000 K. Its host star is a 20-solar-mass B0IV-class subgiant.[93] However, at 60 Jupiter masses, it is not considered a planet under most definitions.

The candidate planet M51-ULS-1b's supergiant primary is an O5-class supergiant with an estimated surface temperature of 40,000 K.

Coolest star with a planet TRAPPIST-1 planets TRAPPIST-1 2,511 K Technically Oph 162225-240515, CFBDSIR 1458+10 and WISE 1217+1626 are cooler, but are classified as brown dwarfs.

System characteristics

[edit]
Title System(s) Planet(s) Star(s) Notes
System with most planets Kepler-90 8 1 Tau Ceti currently has no confirmed planetary companion, although it has been proposed that the number of orbiting planets may be 8, 9 or even 10.[94] The four planets Tau Ceti e, f, g and h are considered as strong candidates.[95]

HD 10180 has six confirmed planets and potentially three more planets.[96]

System with most planets in habitable zone TRAPPIST-1 7 1 Four planets in this system (d, e, f and g) orbit within the habitable zone.[97]
System with most stars Kepler-64 PH1b (Kepler-64b) 4 PH1b has a circumbinary orbit.

30 Arietis Bb was believed to be either brown dwarf or a massive gas giant in a quadruple star system until later studies revealed a true mass well above 80 MJup.[98] The quintuple star system GG Tauri has several protoplanetary disks but no planets have been detected yet.[99]

Multiplanetary system with smallest mean semi-major axis (planets are nearest to their star) Kepler-42 b, c, d 1 Kepler-42 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively.

Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively.

Multiplanetary system with largest mean semi-major axis (planets are farthest from their star) TYC 8998-760-1 b, c 1 TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[5]
Multiplanetary system with smallest range of semi-major axis (smallest difference between the star's nearest planet and its farthest planet) Kepler-42 b, c, d 1 Kepler-42 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively. The separation between closest and furthest is only 0.0094 AU.

Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively. The separation between closest and furthest is only 0.0016 AU (239,356 km).

Multiplanetary system with largest range of semi-major axis (largest difference between the star's nearest planet and its farthest planet) TYC 8998-760-1 b, c 1 TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[5] The separation between closest and furthest is 158 AU.
System with smallest total planetary mass Kepler-444 b, c, d, e, f 3 The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii.
System with largest total planetary mass Nu Ophiuchi b, c 1 Nu Ophiuchi b and c have masses of 22.206 and 24.662 Jupiter masses, respectively.[5] They may be brown dwarfs.
Multiplanetary system with smallest mean planetary mass Kepler-444 b, c, d, e, f 3 The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii.
Multiplanetary system with largest mean planetary mass Nu Ophiuchi b, c 1 Nu Ophiuchi b and c have masses of 22.206 and 24.662 Jupiter masses, respectively.[5] They may be brown dwarfs.
Exo-multiplanetary system with smallest range in planetary mass, log scale (smallest proportional difference between the most and least massive planets) Teegarden's Star b, c 1 Teegarden b and c are estimated to have masses of 1.05 and 1.11 Earth masses, respectively.
Exo-multiplanetary system with largest range in planetary mass, log scale (largest proportional difference between the most and least massive planets) Kepler-37 b, d 1 Mercury and Jupiter have a mass ratio of 5,750 to 1. Kepler-37 d and b may have a mass ratio between 500 and 1,000, and Gliese 676 c and d have a mass ratio of 491.

See also

[edit]

Notes and references

[edit]
  1. ^ "HEC: Top 10 Exoplanets". University of Puerto Rico at Arecibo. 5 December 2015. Archived from the original on 17 December 2013. Retrieved 1 August 2017.
  2. ^ Gui, Yuqian; Zang, Weicheng; Zhai, Ruocheng; Ryu, Yoon-Hyun; Udalski, Andrzej; Yang, Hongjing; Han, Cheongho; Mao, Shude; Authors), (Leading; Albrow, Michael D.; Chung, Sun-Ju; Gould, Andrew; Hwang, Kyu-Ha; Jung, Youn Kil; Shin, In-Gu (July 2024). "Systematic KMTNet Planetary Anomaly Search. XII. Complete Sample of 2017 Subprime Field Planets". The Astronomical Journal. 168 (2): 49. Bibcode:2024AJ....168...49G. doi:10.3847/1538-3881/ad4ce5. ISSN 1538-3881.
  3. ^ "Exoplanet-catalog-Exoplanet exploration-Kepler-1606b".
  4. ^ Specht, D.; et al. (2023). "Kepler K2Campaign 9 – II. First space-based discovery of an exoplanet using microlensing". Monthly Notices of the Royal Astronomical Society. 520 (4): 6350–6366. arXiv:2203.16959. doi:10.1093/mnras/stad212.
  5. ^ a b c d e f g h i j k l m n o p q r s t u v "Planetary Systems Composite Data". NASA Exoplanet Archive. Retrieved 12 December 2021.
  6. ^ Gratton, R.; et al. (June 2020). "Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT". Astronomy & Astrophysics. 638: A120. arXiv:2004.06685. Bibcode:2020A&A...638A.120G. doi:10.1051/0004-6361/202037594. S2CID 215754278.
  7. ^ "NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega" (Press release). Whitney Clavin, NASA. 8 January 2013. Retrieved 4 March 2013.
  8. ^ Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth; Latham, Christian A.; Zhou, George (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal. 161 (4): 157. arXiv:2101.08801. Bibcode:2021AJ....161..157H. doi:10.3847/1538-3881/abdec8. S2CID 231693198.
  9. ^ Reichert, Katja (25 March 2019). "Precise radial velocities of giant stars XII. Evidence against the proposed planet Aldebaran b". Astronomy & Astrophysics. A22: 625. arXiv:1903.09157. Bibcode:2019A&A...625A..22R. doi:10.1051/0004-6361/201834028. S2CID 85459692.
  10. ^ Ducati, J. R. (2002), "VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system", CDS/ADC Collection of Electronic Catalogues, 2237: 0, Bibcode:2002yCat.2237....0D, doi:10.26093/cds/vizier, VizieR Cat. II/237/colors.
  11. ^ Aurière, Michel; Konstantinova-Antova, Renada; et al. (August 2014). "Pollux: a stable weak dipolar magnetic field but no planet?". Proceedings of the International Astronomical Union. Magnetic Fields throughout Stellar Evolution. Vol. 302. pp. 359–362. arXiv:1310.6907. Bibcode:2014IAUS..302..359A. doi:10.1017/S1743921314002476.
  12. ^ Aurière, M.; Petit, P.; et al. (February 2021). "Pollux: A weak dynamo-driven dipolar magnetic field and implications for its probable planet". Astronomy & Astrophysics. 646: A130. arXiv:2101.02016. Bibcode:2021A&A...646A.130A. doi:10.1051/0004-6361/202039573.
  13. ^ a b Lee, B. -C; Han, I.; Park, M. -G.; Kim, K. -M.; Mkrtichian, D. E. (2012). "Detection of the 128-day radial velocity variations in the supergiant α Persei. Rotational modulations, pulsations, or a planet?". Astronomy and Astrophysics. 543: A37. arXiv:1205.3840. Bibcode:2012A&A...543A..37L. doi:10.1051/0004-6361/201118539. S2CID 118482287.
  14. ^ Ygouf, Marie; Beichman, Charles; et al. (October 2023). "Searching for Planets Orbiting Fomalhaut with JWST/NIRCam". The Astronomical Journal. 167 (1): 26. arXiv:2310.15028. Bibcode:2024AJ....167...26Y. doi:10.3847/1538-3881/ad08c8.
  15. ^ a b "The Extrasolar Planet Encyclopaedia — Catalog Listing". Extrasolar Planets Encyclopaedia. 11 January 1995. Retrieved 4 May 2019.
  16. ^ Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (1 April 2023). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv:2303.11841. Bibcode:2023A&A...672L...7K. doi:10.1051/0004-6361/202245608. ISSN 0004-6361.
  17. ^ Lecavelier des Etangs, A.; Lissauer, Jack J. (June 2022). "The IAU working definition of an exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641. IAU website link
  18. ^ Kirkpatrick, J. Davy; Marocco, Federico; et al. (April 2024). "The Initial Mass Function Based on the Full-sky 20 pc Census of ∼3600 Stars and Brown Dwarfs". The Astrophysical Journal Supplement Series. 271 (2): 55. arXiv:2312.03639. Bibcode:2024ApJS..271...55K. doi:10.3847/1538-4365/ad24e2.
  19. ^ Hinkley, S.; Lacour, S.; et al. (March 2023). "Direct discovery of the inner exoplanet in the HD 206893 system. Evidence for deuterium burning in a planetary-mass companion". Astronomy & Astrophysics. 671: L5. arXiv:2208.04867. Bibcode:2023A&A...671L...5H. doi:10.1051/0004-6361/202244727.
  20. ^ Baburaj, Aneesh (February 2024). "How big can you make a planet? Spectroscopic characterization of HD 206893B". JWST Proposal. Cycle 3: 5485. Bibcode:2024jwst.prop.5485B.
  21. ^ Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L. (18 February 2014). "Accretion Onto Planetary Mass Companions of Low-Mass Young Stars". The Astrophysical Journal. 783 (1): L17. arXiv:1401.6545. Bibcode:2014ApJ...783L..17Z. doi:10.1088/2041-8205/783/1/L17. ISSN 2041-8205.
  22. ^ Daemgen, Sebastian; Todorov, Kamen; Silva, Jasmin; Hand, Derek; Garcia, Eugenio V.; Currie, Thayne; Burrows, Adam; Stassun, Keivan G.; Ratzka, Thorsten; Debes, John H.; Lafreniere, David; Jayawardhana, Ray; Correia, Serge (1 May 2017). "Mid-infrared characterization of the planetary-mass companion ROXs 42B b". Astronomy & Astrophysics. 601: A65. arXiv:1702.06549. Bibcode:2017A&A...601A..65D. doi:10.1051/0004-6361/201629949. ISSN 0004-6361.
  23. ^ Inglis, Julie; Wallack, Nicole L.; Xuan, Jerry W.; Knutson, Heather A.; Chachan, Yayaati; Bryan, Marta L.; Bowler, Brendan P.; Iyer, Aishwarya; Kataria, Tiffany; Benneke, Björn; et al. (15 April 2024). "Atmospheric Retrievals of the Young Giant Planet ROXs 42B b from Low- and High-resolution Spectroscopy". The Astronomical Journal. 167 (5): 19. arXiv:2402.09533. Bibcode:2024AJ....167..218I. doi:10.3847/1538-3881/ad2771. ISSN 1538-3881. S2CID 267681834.
  24. ^ Wang, Jason J.; Ginzburg, Sivan; Ren, Bin; Wallack, Nicole; Gao, Peter; Mawet, Dimitri; Bond, Charlotte Z.; Cetre, Sylvain; Wizinowich, Peter; De Rosa, Robert J.; Ruane, Garreth (18 May 2020). "Keck/NIRC2 L'-Band Imaging of Jovian-Mass Accreting Protoplanets around PDS 70". The Astronomical Journal. 159 (6): 263. arXiv:2004.09597. Bibcode:2020AJ....159..263W. doi:10.3847/1538-3881/ab8aef. hdl:2268/254014. ISSN 1538-3881. S2CID 216035946.
  25. ^ Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (12 December 2016). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213.
  26. ^ Zhou, G; Bakos, G. Á; Hartman, J. D; Latham, D. W; Torres, G; Bhatti, W; Penev, K; Buchhave, L; Kovács, G; Bieryla, A; Quinn, S; Isaacson, H; Fulton, B. J; Falco, E; Csubry, Z; Everett, M; Szklenar, T; Esquerdo, G; Berlind, P; Calkins, M. L; Béky, B; Knox, R. P; Hinz, P; Horch, E. P; Hirsch, L; Howell, S. B; Noyes, R. W; Marcy, G; De Val-Borro, M; et al. (2017). "HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography". The Astronomical Journal. 153 (5): 211. arXiv:1702.00106. Bibcode:2017AJ....153..211Z. doi:10.3847/1538-3881/aa674a. S2CID 119491990.
  27. ^ Manitowoc, Terrence Gollata (27 November 2018). "What's the diameter of the largest exoplanet found so far?". Astronomy Magazine. Retrieved 3 January 2024.
  28. ^ "Planet SDSS J1228+1040 b". Extrasolar Planets Encyclopaedia. Retrieved 5 August 2019.
  29. ^ Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (14 April 2023). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv:2303.11841. Bibcode:2023A&A...672L...7K. doi:10.1051/0004-6361/202245608. ISSN 0004-6361.
  30. ^ "Planet TOI-4603 b". NASA Exoplanet Archive. Retrieved 17 November 2023.
  31. ^ Johns, Daniel; Marti, Connor; Huff, Madison; McCann, Jacob; Wittenmyer, Robert A.; Horner, Jonathan; Wright, Duncan J. (16 November 2018). "Revised Exoplanet Radii and Habitability Using Gaia Data Release 2". The Astrophysical Journal Supplement Series. 239 (1): 14. arXiv:1808.04533. Bibcode:2018ApJS..239...14J. doi:10.3847/1538-4365/aae5fb. ISSN 1538-4365.
  32. ^ Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Rowe, Jason F.; Jenkins, Jon M.; Bryson, Stephen T.; Latham, David W.; Howell, Steve B.; Gautier III, Thomas N.; Batalha, Natalie M.; Rogers, Leslie A. (13 January 2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2): 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20. hdl:1721.1/92945. ISSN 0067-0049. S2CID 10760418.
  33. ^ a b c d Very Low-Density Planets around Kepler-51 Revealed with Transit Timing Variations and an Anomaly Similar to a Planet-Planet Eclipse Event: Kento Masuda
  34. ^ a b Charpinet, S.; et al. (21 December 2011). "A compact system of small planets around a former red-giant star". Nature. 480 (7378): 496–499. Bibcode:2011Natur.480..496C. doi:10.1038/nature10631. ISSN 1476-4687. PMID 22193103. S2CID 2213885.
  35. ^ Neuhäuser, R.; Mugrauer, M.; Seifahrt, A.; Schmidt, T. O. B.; Vogt, N. (1 June 2008). "Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion". Astronomy & Astrophysics. 484 (1): 281–291. arXiv:0801.2287. Bibcode:2008A&A...484..281N. doi:10.1051/0004-6361:20078493. ISSN 0004-6361.
  36. ^ Is this a Brown Dwarf or an Exoplanet? New Young Sub-stellar Companion Imaged with the VLT Archived 2008-05-07 at the Wayback Machine, ESO Press Release 09/05, April 7, 2005.
  37. ^ Beaulieu, J. -P.; Bennett, D. P.; Fouqué, P.; Williams, A.; Dominik, M.; Jørgensen, U. G.; Kubas, D.; Cassan, A.; Coutures, C.; Greenhill, J.; Hill, K.; Menzies, J.; Sackett, P. D.; Albrow, M.; Brillant, S. (1 January 2006). "Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing". Nature. 439 (7075): 437–440. arXiv:astro-ph/0601563. Bibcode:2006Natur.439..437B. doi:10.1038/nature04441. ISSN 0028-0836. PMID 16437108.
  38. ^ Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; Giacobbe, Paolo; Sozzetti, Alessandro; Morbidelli, Alessandro; Pojmanski, Grzegorz; Barbato, Domenico; Butler, R. Paul; Jones, Hugh R. A.; Hambsch, Franz-Josef; Jenkins, James S.; López-González, María José; Morales, Nicolás; Peña Rojas, Pablo A. (1 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3): eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
  39. ^ Hoyer, S.; Jenkins, J. S.; Parmentier, V.; Deleuil, M.; Scandariato, G.; Wilson, T. G.; Díaz, M. R.; Crossfield, I. J. M.; Dragomir, D.; Kataria, T.; Lendl, M.; Ramirez, R.; Peña Rojas, P. A.; Vinés, J. I. (10 July 2023). "The extremely high albedo of LTT 9779 b revealed by CHEOPS". Astronomy & Astrophysics. 675: A81. doi:10.1051/0004-6361/202346117. Retrieved 12 July 2023.
  40. ^ David M. Kipping; et al. (2011). "Detection of visible light from the darkest world". Monthly Notices of the Royal Astronomical Society. 417 (1): L88–L92. arXiv:1108.2297. Bibcode:2011MNRAS.417L..88K. doi:10.1111/j.1745-3933.2011.01127.x. S2CID 119287494.
  41. ^ Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (12 December 2016). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213. S2CID 119511524.
  42. ^ "The Extrasolar Planet Encyclopaedia — Proplyd 133-353". Extrasolar Planets Encyclopaedia. Retrieved 30 March 2019.
  43. ^ a b Lecavelier des Etangs, A.; Lissauer, Jack J. (1 June 2022). "The IAU working definition of an exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641.
  44. ^ Todorov, K.; Luhman, K. L.; McLeod, K. K. (1 May 2010). "Discovery of a Planetary-Mass Companion to a Brown Dwarf in Taurus". The Astrophysical Journal. 714 (1): L84–L88. arXiv:1004.0539. Bibcode:2010ApJ...714L..84T. doi:10.1088/2041-8205/714/1/L84. ISSN 2041-8205.
  45. ^ Mann, Andrew W.; Newton, Elisabeth R.; Rizzuto, Aaron C.; Irwin, Jonathan; Feiden, Gregory A.; Gaidos, Eric; Mace, Gregory N.; Kraus, Adam L.; James, David J.; Ansdell, Megan; Charbonneau, David; Covey, Kevin R.; Ireland, Michael J.; Jaffe, Daniel T.; Johnson, Marshall C. (1 September 2016). "Zodiacal Exoplanets in Time (Zeit). III. A Short-Period Planet Orbiting a Pre-Main-Sequence Star in the Upper Scorpius Ob Association". The Astronomical Journal. 152 (3): 61. arXiv:1604.06165. Bibcode:2016AJ....152...61M. doi:10.3847/0004-6256/152/3/61. ISSN 0004-6256.
  46. ^ Lacki, Brian C.; Brzycki, Bryan; Croft, Steve; Czech, Daniel; DeBoer, David; DeMarines, Julia; Gajjar, Vishal; Isaacson, Howard; Lebofsky, Matt; MacMahon, David H. E.; Price, Danny C.; Sheikh, Sofia Z.; Siemion, Andrew P. V.; Drew, Jamie; Worden, S. Pete (1 December 2021). "One of Everything: The Breakthrough Listen Exotica Catalog". The Astrophysical Journal Supplement Series. 257 (2): 42. arXiv:2006.11304. Bibcode:2021ApJS..257...42L. doi:10.3847/1538-4365/ac168a. ISSN 0067-0049.
  47. ^ "The Extrasolar Planet Encyclopaedia — GJ 900 (ABC)b". Extrasolar Planets Encyclopaedia. Paris Observatory. Retrieved 16 June 2024.
  48. ^ Nelemans, G.; Haaften, L. M. van; Voss, R.; Jonker, P. G. (2012). "Formation of the planet orbiting the millisecond pulsar J1719-1438". Proceedings of the International Astronomical Union. 8: 133–136. arXiv:1210.6332. doi:10.1017/S1743921312023381.
  49. ^ "The Extrasolar Planet Encyclopaedia — SWIFT J1756-2508". Extrasolar Planets Encyclopaedia. Retrieved 22 August 2018.
  50. ^ Vleeschower, L.; Corongiu, A.; Stappers, B. W.; Freire, P. C. C.; Ridolfi, A.; Abbate, F.; Ransom, S. M.; Possenti, A.; Padmanabh, P. V.; Balakrishnan, V.; Kramer, M.; Venkatraman Krishnan, V.; Zhang, L.; Bailes, M.; Barr, E. D. (1 May 2024). "Discoveries and timing of pulsars in M62". Monthly Notices of the Royal Astronomical Society. 530 (2): 1436–1456. arXiv:2403.12137. Bibcode:2024MNRAS.530.1436V. doi:10.1093/mnras/stae816. ISSN 0035-8711.
  51. ^ Martin, Pierre-Yves (2019). "Planet GP Com b". exoplanet.eu. Retrieved 8 July 2024.
  52. ^ Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan (2018), "The double helium-white dwarf channel for the formation of AM CVN binaries", Research in Astronomy and Astrophysics, 18 (1): 009, arXiv:1801.03196, Bibcode:2018RAA....18....9Z, doi:10.1088/1674-4527/18/1/9, S2CID 73586281
  53. ^ "The Extrasolar Planet Encyclopaedia — K2-137 b.". Extrasolar Planets Encyclopaedia. 2018.
  54. ^ a b c Rothermich, Austin; Faherty, Jacqueline K.; Bardalez-Gagliuffi, Daniella; Schneider, Adam C.; Kirkpatrick, J. Davy; Meisner, Aaron M.; Burgasser, Adam J.; Kuchner, Marc; Allers, Katelyn; Gagné, Jonathan; Caselden, Dan; Calamari, Emily; Popinchalk, Mark; Suárez, Genaro; Gerasimov, Roman (1 June 2024). "89 New Ultracool Dwarf Comoving Companions Identified with the Backyard Worlds: Planet 9 Citizen Science Project". The Astronomical Journal. 167 (6): 253. arXiv:2403.04592. Bibcode:2024AJ....167..253R. doi:10.3847/1538-3881/ad324e. ISSN 0004-6256.
  55. ^ "PSR J1719-1438 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
  56. ^ "HD 20781 b". Open Exoplanet Catalogue. Retrieved 20 October 2018.
  57. ^ "The Extrasolar Planet Encyclopaedia — HD 20782 b". Extrasolar Planets Encyclopaedia. Retrieved 4 May 2019.
  58. ^ "The Extrasolar Planet Encyclopaedia — VB 10 b". Extrasolar Planets Encyclopaedia. Retrieved 12 February 2020.
  59. ^ Feng, Fabo; Butler, R. Paul; Vogt, Steven S.; Clement, Matthew S.; Tinney, C. G.; Cui, Kaiming; Aizawa, Masataka; Jones, Hugh R. A.; Bailey, J.; Burt, Jennifer; Carter, B. D.; Crane, Jeffrey D.; Flammini Dotti, Francesco; Holden, Bradford; Ma, Bo (1 September 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series. 262 (1): 21. arXiv:2208.12720. Bibcode:2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. ISSN 0067-0049.
  60. ^ a b c d e f g h "Planetary Systems". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
  61. ^ Dalal, S.; Kiefer, F.; Hébrard, G.; Sahlmann, J.; Sousa, S. G.; Forveille, T.; Delfosse, X.; Arnold, L.; Astudillo-Defru, N.; Bonfils, X.; Boisse, I.; Bouchy, F.; Bourrier, V.; Brugger, B.; Cortés-Zuleta, P. (1 July 2021). "The SOPHIE search for northern extrasolar planets. XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars". Astronomy and Astrophysics. 651: A11. arXiv:2105.09741. Bibcode:2021A&A...651A..11D. doi:10.1051/0004-6361/202140712. ISSN 0004-6361.
  62. ^ De Rosa, Robert J.; Kalas, Paul (February 2019). "A Near-coplanar Stellar Flyby of the Planet Host Star HD 106906". The Astronomical Journal. 157 (3). 125. arXiv:1902.10220. Bibcode:2019AJ....157..125D. doi:10.3847/1538-3881/ab0109. S2CID 119191779.
  63. ^ Orosz, J.; Welsh, W.; Carter, J.; Fabrycky, D.; Cochran, W.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System". Science. 337 (6101): 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411.
  64. ^ Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prsa; William F. Welsh; et al. (2011). "Kepler-16: A Transiting Circumbinary Planet". Science. 333 (6049): 1602–1606. arXiv:1109.3432. Bibcode:2011Sci...333.1602D. doi:10.1126/science.1210923. PMID 21921192. S2CID 206536332.
  65. ^ a b c d Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R. (1 April 2011). "The Widest-Separation Substellar Companion Candidate to a Binary T Tauri Star". The Astronomical Journal. 141 (4): 119. Bibcode:2011AJ....141..119K. doi:10.1088/0004-6256/141/4/119. ISSN 0004-6256.
  66. ^ Currie, Thayne; Daemgen, Sebastian; Debes, John; Lafreniere, David; Itoh, Yoichi; Jayawardhana, Ray; Ratzka, Thorsten; Correia, Serge (2014). "Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit In The Young Binary Star System, ROXs 42B". The Astrophysical Journal Letters. 780 (2): 30. arXiv:1310.4825. Bibcode:2014ApJ...780L..30C. doi:10.1088/2041-8205/780/2/L30. S2CID 118464822.
  67. ^ Gaarn, Josefine; Burningham, Ben; Faherty, Jacqueline K; Visscher, Channon; Marley, Mark S; Gonzales, Eileen C; Calamari, Emily; Bardalez Gagliuffi, Daniella; Lupu, Roxana; Freedman, Richard (31 March 2023). "The puzzle of the formation of T8 dwarf Ross 458c". Monthly Notices of the Royal Astronomical Society. 521 (4): 5761–5775. arXiv:2303.16863. Bibcode:2023MNRAS.521.5761G. doi:10.1093/mnras/stad753. ISSN 0035-8711.
  68. ^ Kraus, Adam; J. Ireland, Michael; A. Cieza, Lucas; Hinkley, Sasha; J. Dupuy, Trent; P. Bowler, Brendan; C. Liu, Michael (2 January 2014). "Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B". The Astrophysical Journal. 781 (1): 1311. arXiv:1311.7664. Bibcode:2014ApJ...781...20K. doi:10.1088/0004-637X/781/1/20. S2CID 41086512.
  69. ^ Mora, Ariel; Wu, Ya-Lin; Bowler, Brendan P.; Sheehan, Patrick (1 January 2020). "Measuring the Mass of the Faint Companion to FW Tau with ALMA". Research Notes of the AAS. 4 (1): 9. Bibcode:2020RNAAS...4....9M. doi:10.3847/2515-5172/ab6852. ISSN 2515-5172.
  70. ^ a b Gould, A.; et al. (3 July 2014). "A terrestrial planet in a ~1-AU orbit around one member of a 15-AU binary". Science. 345 (6192): 46–49. arXiv:1407.1115. Bibcode:2014Sci...345...46G. doi:10.1126/science.1251527. ISSN 0036-8075. PMID 24994642. S2CID 206555598. these projected separations are good proxies for the semi-major axis (afterupward adjustment by to correct for projection effects)
  71. ^ Horner, J.; Wittenmyer, R. A.; Hinse, T. C.; Marshall, J. P. (2014). "A dynamical investigation of the proposed BD +20 2457 system". Monthly Notices of the Royal Astronomical Society. 439 (1): 1176. arXiv:1401.2793. Bibcode:2014MNRAS.439.1176H. doi:10.1093/mnras/stu081.
  72. ^ Jones, M. I.; Jenkins, J. S. (2014). "No evidence of the planet orbiting the extremely metal-poor extragalactic star HIP 13044". Astronomy and Astrophysics. 562: A129. arXiv:1401.0517. Bibcode:2014A&A...562A.129J. doi:10.1051/0004-6361/201322132. S2CID 55365608.
  73. ^ Reggiani, Henrique; Ji, Alexander P.; Schlaufman, Kevin C.; Frebel, Anna; Necib, Lina; Nelson, Tyler; Hawkins, Keith; Galarza, Jhon Yana (2022). "The Chemical Composition of Extreme-velocity Stars". The Astronomical Journal. 163 (6): 252. arXiv:2203.16364. Bibcode:2022AJ....163..252R. doi:10.3847/1538-3881/ac62d9. S2CID 247793231.
  74. ^ Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A. (2015), "The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars", Astronomy & Astrophysics, 583: A49, arXiv:1509.05344, Bibcode:2015A&A...583A..49H, doi:10.1051/0004-6361/201526812
  75. ^ "Notes for mu2 scorpii". Extrasolar Planets Encyclopaedia. Retrieved 6 May 2022.
  76. ^ "Notes for planet M51-ULS-1b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
  77. ^ Wenz, John (29 November 2023). "Astronomers discover disk around star in another galaxy". Astronomy Magazine.
  78. ^ "Notes for planet 2MASSS J1119-1137 B". Extrasolar Planets Encyclopaedia. Retrieved 29 August 2017.
  79. ^ a b Fedele; et al. (2005). "The K -Band Intensity Profile of R Leonis Probed by VLTI/VINCI". Astronomy & Astrophysics. 431 (3): 1019–1026. arXiv:astro-ph/0411133. Bibcode:2005A&A...431.1019F. doi:10.1051/0004-6361:20042013. S2CID 15500217.
  80. ^ a b Paladini, C.; Sacuto, S.; Klotz, D.; Ohnaka, K.; Wittkowski, M.; Nowotny, W.; Jorissen, A.; Hron, J. (1 August 2012). "Detection of an asymmetry in the envelope of the carbon Mira R Fornacis using VLTI/MIDI". Astronomy & Astrophysics. 544: L5. arXiv:1207.3910. doi:10.1051/0004-6361/201219831. ISSN 0004-6361.
  81. ^ "The Extrasolar Planet Encyclopaedia — R For b". Extrasolar Planets Encyclopaedia. Paris Observatory. Retrieved 19 July 2024.
  82. ^ a b Kastner, J. H.; Buchanan, C. L.; Sargent, B.; Forrest, W. J. (2006). "SpitzerSpectroscopy of Dusty Disks around B\e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29–L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804.
  83. ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michael; Demory, Brice-Olivier; Burdanov, Artem (14 January 2021), "Refining the transit timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides", The Planetary Science Journal, 2 (1): 1, arXiv:2010.01074, Bibcode:2021PSJ.....2....1A, doi:10.3847/PSJ/abd022
  84. ^ Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol (December 1995). "Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10". The Astrophysical Journal. 455: 670. Bibcode:1995ApJ...455..670L. doi:10.1086/176614. hdl:2060/19970022983. ISSN 0004-637X.
  85. ^ "The Extrasolar Planet Encyclopaedia — 2M 0746+20 b". Extrasolar Planets Encyclopaedia. Archived from the original on 4 September 2019. Retrieved 8 March 2014.
  86. ^ a b Yue, Y. L.; Cui, X. H.; Xu, R. X. (1 October 2006). "Is PSR B0943+10 a low-mass quark star?". The Astrophysical Journal. 649 (2): L95–L98. arXiv:astro-ph/0603468. Bibcode:2006ApJ...649L..95Y. doi:10.1086/508421. ISSN 0004-637X. S2CID 18183996.
  87. ^ "Archived copy" (PDF). Archived from the original (PDF) on 12 February 2019. Retrieved 26 October 2017.{{cite web}}: CS1 maint: archived copy as title (link)
  88. ^ McDonald, I.; Zijlstra, A. A.; Boyer, M. L. (1 November 2012). "Fundamental parameters and infrared excesses of Hipparcos stars". Monthly Notices of the Royal Astronomical Society. 427 (1): 343–357. arXiv:1208.2037. Bibcode:2012MNRAS.427..343M. doi:10.1111/j.1365-2966.2012.21873.x. ISSN 0035-8711. Alpha Persei's database entry at VizieR.
  89. ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michaël; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien (1 February 2021). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv:2010.01074. Bibcode:2021PSJ.....2....1A. doi:10.3847/PSJ/abd022. ISSN 2632-3338.
  90. ^ Stassun, Keivan G.; Oelkers, Ryan J.; Paegert, Martin; Torres, Guillermo; Pepper, Joshua; De Lee, Nathan; Collins, Kevin; Latham, David W.; Muirhead, Philip S.; Chittidi, Jay; Rojas-Ayala, Bárbara; Fleming, Scott W.; Rose, Mark E.; Tenenbaum, Peter; Ting, Eric B. (1 October 2019). "The Revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. ISSN 0004-6256.
  91. ^ Pulley, D.; Sharp, I. D.; Mallett, J.; von Harrach, S. (August 2022). "Eclipse timing variations in post-common envelope binaries: Are they a reliable indicator of circumbinary companions?". Monthly Notices of the Royal Astronomical Society. 514 (4): 5725–5738. arXiv:2206.06919. Bibcode:2022MNRAS.514.5725P. doi:10.1093/mnras/stac1676.
  92. ^ Janson, Markus; Gratton, Raffaele; Rodet, Laetitia; Vigan, Arthur; Bonnefoy, Mickaël; Delorme, Philippe; Mamajek, Eric E.; Reffert, Sabine; Stock, Lukas; Marleau, Gabriel-Dominique; Langlois, Maud; Chauvin, Gaël; Desidera, Silvano; Ringqvist, Simon; Mayer, Lucio; Viswanath, Gayathri; Squicciarini, Vito; Meyer, Michael R.; Samland, Matthias; Petrus, Simon; Helled, Ravit; Kenworthy, Matthew A.; Quanz, Sascha P.; Biller, Beth; Henning, Thomas; Mesa, Dino; Engler, Natalia; Carson, Joseph C. (2021). "A wide-orbit giant planet in the high-mass b Centauri binary system". Nature. 600 (7888): 231–234. arXiv:2112.04833. Bibcode:2021Natur.600..231J. doi:10.1038/s41586-021-04124-8. PMID 34880428. S2CID 245005994.
  93. ^ "V921 Sco b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
  94. ^ Dietrich, Jeremy; Apai, Dániel (27 October 2020). "An Integrated Analysis with Predictions on the Architecture of the tau Ceti Planetary System, Including a Habitable Zone Planet". The Astronomical Journal. 161: 17. arXiv:2010.14675. doi:10.3847/1538-3881/abc560. S2CID 225094415.
  95. ^ Feng, F.; Tuomi, M.; Jones, H. R. A.; Barnes, J.; Anglada-Escudé, G.; Vogt, S. S.; Butler, R. P. (5 September 2017). "Color Difference Makes a Difference: Four Planet Candidates around τ Ceti". The Astronomical Journal. 154 (4): 135. arXiv:1708.02051. Bibcode:2017AJ....154..135F. doi:10.3847/1538-3881/aa83b4. ISSN 0004-6256.
  96. ^ Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system". Astronomy & Astrophysics. 543: A52. arXiv:1204.1254. Bibcode:2012A&A...543A..52T. doi:10.1051/0004-6361/201118518. S2CID 15876919.
  97. ^ "NASA telescope reveals largest batch of Earth-size, habitable-zone planets around single star". Exoplanet Exploration: Planets Beyond our Solar System. nasa.gov. 21 February 2017. Retrieved 14 December 2017.
  98. ^ Kiefer, F.; et al. (January 2021). "Determining the true mass of radial-velocity exoplanets with Gaia. Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets". Astronomy & Astrophysics. 645 A7. arXiv:2009.14164. Bibcode:2021A&A...645A...7K. doi:10.1051/0004-6361/202039168. S2CID 221995447.
  99. ^ "Astronomers Examine Ezekiel-like 'Wheel in a Wheel' in Binary System GG Tauri-A". Sci-News.com. 30 October 2014. Retrieved 10 February 2017.
  1. ^ Gamma Leonis is mentioned to have a slightly higher magnitude (1.99), but it is the combined magnitude of the system and not of the planet-hosting star. The true apparent magnitude is 2.37.
  2. ^ The deuterium burning limit also depends on the metallicity and abundance of helium. Metal-rich planets, for example, need a lower mass to fuse deuterium.
  3. ^ Based on the estimated temperature and luminosity.
  4. ^ This is the calculated equilibrium temperature, assuming an albedo of 0.3
  5. ^ Determined using angular diameter and distance.
    0.008 milliarcseconds * 680 pc = diameter of 5.44 au.
  6. ^ This is the radius
  7. ^ A normal star is a star that is past its protostar period, in its main fusion period, before becoming a degenerate star, black hole, or post-stellar nebula, and is not a brown dwarf
[edit]