Jump to content

Метод коррекции давления

Метод коррекции давления — это класс методов, используемых в вычислительной гидродинамике для численного решения уравнений Навье-Стокса, обычно для несжимаемых потоков .

Общие свойства

[ редактировать ]

Уравнения, решаемые в этом подходе, возникают в результате неявного интегрирования по времени уравнений Навье – Стокса для несжимаемой жидкости .



Из-за нелинейности конвективного члена в записанном выше уравнении количества движения эта проблема решается методом вложенного цикла. Хотя так называемый глобальный или внутренние итерации представляют собой шаги в реальном времени и используются для обновления переменных. и , основанный на линеаризованной системе и граничных условиях; существует также внешний цикл обновления коэффициентов линеаризованной системы.
Внешние итерации состоят из двух шагов:

  1. Решите уравнение количества движения для предварительной скорости, основанной на скорости и давлении предыдущего внешнего цикла.
  2. Подставьте новую полученную скорость в уравнение непрерывности, чтобы получить поправку.

Поправка на скорость, полученная из второго уравнения для несжимаемого потока, критерия недивергенции или уравнения неразрывности

рассчитывается путем сначала расчета остаточной стоимости , возникающий в результате ложного потока массы , а затем используя этот дисбаланс масс , чтобы получить новое значение давления. Значение давления, которое пытаются вычислить, таково, что при его включении в уравнения количества движения получается бездивергенционное поле скорости. Дисбаланс масс часто также используется для управления внешним контуром.
Название этого класса методов связано с тем, что поправка поля скорости вычисляется через поле давления.

Дискретизация этого обычно выполняется либо методом конечных элементов , либо методом конечных объемов . В последнем случае можно также столкнуться с двойной сеткой, т.е. с расчетной сеткой, полученной путем соединения центров ячеек, полученных в результате первоначального разделения на конечные элементы расчетной области.

Неявные процедуры разделения обновлений

[ редактировать ]

Другой подход, который обычно используется в FEM, заключается в следующем.

Целью этапа коррекции является обеспечение сохранения массы . В непрерывной форме для массы сжимаемых веществ сохранение массы выражается выражением

где – квадрат «скорости звука». Для малых чисел Маха и несжимаемых сред. предполагается бесконечным, что является причиной того, что приведенное выше уравнение непрерывности сводится к

Способ получения поля скорости, удовлетворяющего вышеизложенному, состоит в вычислении давления, которое при подстановке в уравнение количества движения приводит к желаемой коррекции предварительно вычисленной промежуточной скорости.

Применение оператора дивергенции к уравнению количества сжимаемого импульса дает

затем предоставляет основное уравнение для расчета давления.

Идея коррекции давления существует также в случае переменной плотности и высоких чисел Маха, хотя в этом случае существует реальный физический смысл связи динамического давления и скорости, вытекающей из уравнения неразрывности.

со сжимаемостью, которая по-прежнему является дополнительной переменной, которую можно устранить с помощью алгебраических операций, но ее изменчивость не является чистой выдумкой, как в случае сжимаемости, и методы ее вычисления существенно отличаются от методов со сжимаемостью.

  • М. Томадакис, М. Лещинер: МЕТОД КОРРЕКЦИИ ДАВЛЕНИЯ ДЛЯ РЕШЕНИЯ НЕСЖИМАЕМЫХ ВЯЗКИХ ПОТОКОВ НА НЕСТРУКТУРИРОВАННЫХ СЕТКАХ, Int. Журнал численной математики. в «Жидкости», Vol. 22, 1996 г.
  • А. Мейстер, Дж. Штрукмайер: Гиперболические уравнения в частных производных, 1-е издание, Vieweg, 2002 г.
[ редактировать ]
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 3bc1e31901e09cd5d5d157d9526ccb27__1615125600
URL1:https://arc.ask3.ru/arc/aa/3b/27/3bc1e31901e09cd5d5d157d9526ccb27.html
Заголовок, (Title) документа по адресу, URL1:
Pressure-correction method - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)