Ōatuaina caldera
Ōatuaina caldera | |
---|---|
Вулканический центр ōKataina, Окатаина Кальдера, вулканический центр Окатаина | |
![]() Окатана вулканического центра отношения с другими близлежащими вулканическими и тектоническими структурами | |
Highest point | |
Coordinates | 38°10′S 176°30′E / 38.167°S 176.500°E |
Dimensions | |
Length | 28 km (17 mi)[1] |
Width | 15 km (9.3 mi)[1] |
Geography | |
Country | New Zealand |
Region | Bay of Plenty |
Geology | |
Age of rock | |
Mountain type | Caldera |
Volcanic region | Taupō Volcanic Zone |
Last eruption | 1886 Tarawera, 1973 Hydrothermal in Waimangu Volcanic Rift Valley |
Climbing | |
Access | State Highway 5 (New Zealand) |

ŌKataina Caldera ( вулканический центр ōkataina , также написанный Okataina ) - это вулканическая кальдера и связанные с ним вулканы, расположенные в вулканической зоне Тауупо на Новой Зеландии северном острове . Он имеет несколько фактических или постулируемых суб -кальдеров. Кальдера ōKataina находится к востоку от меньшей отдельной роторуа -кальдеры и к юго -западу от гораздо меньшего погружения в ротома , который обычно рассматривается как связанный вулкан. Он показывает высокие показатели взрывного риолитового вулканизма, хотя его последнее извержение было базальтовым . Постулируемая кальдера Haroharo, содержащаяся в нем, иногда была описана почти в взаимозаменяемых терминах с ōKataina Caldera или вулканическим комплексом или центром, а также другими авторами в виде отдельного комплекса, определяемого гравитационными и магнитными особенностями. [3]: 14 .[a] Since 2010 other terms such as the Haroharo vent alignment, Utu Caldera, Matahina Caldera, Rotoiti Caldera and a postulated Kawerau Caldera are often used,[2] rather than a Haroharo Caldera classification.[3]: 2
Geography
[edit]The caldera covers an area of about 450 square kilometres (170 sq mi), stretching from Lake Rotoehu in the north to Lake Rotomahana in the south.[4] The north east boundary bisects Lake Rotoiti and the north east includes all of Lake Rotomā. The south west corner is defined by the domes of the Ōkareka Embayment and the Waimangu Volcanic Rift Valley while the south east aspect is dominated by Mount Tarawera and the volcanic badlands of the Puhipuhi Basin. The caldera also contains several lakes, including part or all of Lake Ōkareka, Lake Ōkataina, Lake Rotoehu, Lake Rotomā, Lake Rotoiti, Lake Rotomahana, Lake Tarawera and Lake Tikitapu.[4]
Geology
[edit]The overwhelming volcanic deposits are rhyolite, with some basalt and one area of dacite. The caldera is now thought to contain the Utu Caldera, the major event Matahina Caldera, the Rotoiti Caldera, and the Kawerau Caldera with three associated geologically collapse structure embayments.[2] These are Rotomā Embayment, historically regarded as a caldera, the Ōkareka Embayment as another, now in-filled caldera and the Puhipuhi Embayment. The oldest parts of the caldera basement are now over 5 km (3.1 mi) deep and the younger Rotoiti and Kawerau calderas are still 2.5 km (1.6 mi) deep and largely infilled by eruptives.[5][2]
Eruptions
[edit]
The caldera has seen six eruptions in the past 10,000 years, most recently the 1886 Mount Tarawera eruption in the caldera's southeastern corner. The caldera contains two major lava dome complexes, the Haroharo vent alignment in the north and Tarawera vent alignment in the south. These two vent alignments are associated with current subsidence in the last 20 years of about 1.5 cm/year (0.59 in/year) which is assumed to be because of mainly cooling and contraction of previous magma melt.[6] Other volcanoes connected with the caldera include Putauaki (Mount Edgecumbe) [7] and the maar crater of Lake Rotokawau which is most likely to have formed from a basaltic dike extrusion associated with the common magma mush body.[8]
Threat
[edit]While most currently active New Zealand volcanoes produce small eruptions relatively frequently, Ōkataina's volcanoes tend to erupt very violently after intervals of centuries. As such, they pose significant potential threats to the Bay of Plenty Region but are also the most significant volcanic risk in New Zealand.[7] During the last 20,000 years, pyroclastic and lava eruptions have occurred of several types; low-silicate basalt eruptions, high-silicate rhyolite eruptions, and the rarer intermediate andesite and dacite eruptions. The most common magma type at Ōkataina is rhyolite.[7] The warning time before eruptions is currently suspected to be potentially hours as volcanic unrest signals are very non specific, historic composition analysis is consistent with this speed from magma reservoir to surface and this was all the warning given by the only rhyolitic eruption of the modern era.[9]
Eruption mechanism
[edit]The underlying arc volcanism is driven initially by large inputs of basaltic melt from the subducted Pacific Plate. These basaltic melts often never reach the surface due to a relatively high density of the magma compared to the surrounding Australian Plate crust, but may trigger earthquake swarms.[10] Usually, these intrusions cool in the crust and then either solidify to a gabbroic igneous intrusion (also known as a pluton) at depth or are associated with the generation of more evolved magmas with higher silicate content that separate. They may then as evolved intrusions, cool further without erupting to form a felsic intrusion or can ascend to then erupt as rhyolite, dacite, or andesite. Sometimes such eruptions are believed to be primed by a basaltic melt predecessor. In the case of the Ōkataina Caldera the sub-surface architecture is known to be made up of discrete melt-mush pockets, and with one dacite exception already mentioned, these are rhyolitic. The melt-mush pockets are mainly between 5 and 8 km (3.1 and 5.0 mi) in depth but one has been characterised at 3 km (1.9 mi) depth.[5] The pockets have erupted compositionally distinct magmas in single eruptions.[2] The composition is related to heat and volatiles transferred between the parent basalts and such rhyolites over the time the sub pocket has been maturing. Basaltic-rhyolitic magma interaction definitely happens from local and world wide studies, and will also be a factor in the many different eruption styles that have occurred.[2] Sometimes basalt appears to lead the eruption, at other times it has been postulated that tectonic earthquakes are the final enabler of an eruption.[2][11]
Any basaltic magmas that do reach the surface will have traversed this complicated crustal region and may erupt as a dyke. This is believed to have happened with the 1886 Mount Tarawera eruption.[2]

basalt dacite rhyolite / ignimbrite █ Definite vents.
History
[edit]It is likely that the volcanic history of the area began some 625,000 years ago.[12] The caldera was formed by at least five huge eruptions between 400,000 and 50,000 years ago.
The oldest eruptive sub caldera is called the Utu caldera and is located in the south central portion. The basement of this sub caldera is about 5 km (3.1 mi) below present ground level.[2]
The most significant collapse event, with an eruptive volume of 150 cubic kilometres (36 cu mi) was 280,000 years ago.[13] This collapse was associated with eruption of the Matahina Ignimbrite which covers over 2,000 km2 (770 sq mi) of the central North Island.[1] The second major phase Matahina sub caldera is to the south east and its basement is also about 5 km (3.1 mi) below present ground level.[2] The original shape of the Matahina caldera has been modified (and buried/destroyed) by various events including at least eight smaller eruptions between 70,000 and 24,000 years ago. For example the dacite Puripuri basin/embayment is a subsidence related feature. This subsidence is related to the lateral movement of the underlying magma towards the eastern caldera margins.[2]
The paired eruptions approximately 50,000 years ago[14] of Rotoiti and at Earthquake Flat at far northern and southern ends of the caldera respectively had eruptive volumes of 120 cubic kilometres (29 cu mi) and 10 cubic kilometres (2.4 cu mi).[1] The resulting Rotoiti sub caldera is to the north of the Utu Caldera.[2]
Between this eruption and 21,000 years ago over 81 km3 (19 cu mi) of Mangaone silicic plinian tephras or pyroclastic flow deposits occurred but it is unknown where the eruptions were centered. One of these events can be assigned to the Kawerau ignimbrite eruption of 33,000 years ago, with its location within the central part of the Matahina Caldera at level of the Puhipuhi Basin.[1] An area of low gravity on gravimetric studies is consistent with the fourth phase Kawerau Caldera being here and its basement being about 2 km (1.2 mi) below present ground level.[2]
Although the latest caldera models include the Haroharo vent alignment they do not allow for the separate existence of a Haroharo caldera as many had historically postulated existed.[2]
More recently volcanoes within the caldera are known to have erupted eleven times in the last 21,000 years, with all but two of those eruptions being rhyolite.[15][7] The Rotoma eruptions occurred in a north eastern embayment, and again like with the case of the Puripuri basin, the magma erupted from a lateral reservoir is associated with subsidence back to the eastern Rotoiti caldera margin. The Ōkareka Embayment to the west is also associated with caldera rim subsidence, this time the western shared rims of the Utu, Matahina and Rotoiti calderas.[2]
Two of these eruptions, both at Tarawera, occurred within the last 2000 years (in 1886 and c. 1314AD). The most explosive of the eruptions in the last 21,000 years is likely to have been on the Haroharo vent alignment at about 5500 BCE. This ejected some 17 km3 (4.1 cu mi) of magma.[7] During the last 21,000 years the Ōkataina volcano has contributed a total magma eruptive volume of about 80 km3 (19 cu mi) in all its eruptions.[15][16]
In summary the more significant eruptions have been:[13][12][1]
Year before present | Calendar date | Eruptive name | Vent / Vent alignment / Caldera | Volume erupted | Notes |
---|---|---|---|---|---|
138 cal.yr | 10 June 1886 CE | Tarawera | Tarawera | 1 km3 (0.24 cu mi) DRE | Basaltic eruption[13][12][1][17] |
710 ± 12 cal.yr | 1314 ± 12 CE | Kaharoa tephra | Tarawera | 5 km3 (1.2 cu mi) DRE | [13][18][17] This eruption was immediately preceded by a rupture on the Edgecumbe fault.[19] |
3710 ± 10 cal.yr | 1760 ± 10 BCE | Rotokawau | Rotokawau | - | Basaltic eruption[20]: 21 [21][22] |
5526 ± 145 cal.yr | 3576 ± 145 BCE | Whakatane | Haroharo | 13 km3 (3.1 cu mi) DRE | [13][17] |
7940 ± 257 cal.yr | 5990 ± 257 BCE | Mamaku | Haroharo | 17 km3 (4.1 cu mi) DRE | [13][23][17] |
9423 ± 120 cal.yr | 7473 ± 120 BCE | Rotoma | Haroharo | 8 km3 (1.9 cu mi) DRE | [13][17] |
14,009 ± 155 cal.yr | 12059 ± 155 BCE | Waiohau tephra | Tarawera | 10 km3 (2.4 cu mi) DRE | [13][17] |
15,635 ± 412 cal.yr | 13685 ±412 BCE | Rotorua tephra | Haroharo | 4 km3 (0.96 cu mi) DRE | [13][17] |
17,496 ± 462 cal.yr | 15546 ± 462 BCE | Rerewhakaaitu tephra | Tarawera | 5 km3 (1.2 cu mi) DRE | [13][24][17] |
23,525–370+230 cal.yr | 21575 BCE | Okareka | Tarawera | 8 km3 (1.9 cu mi) DRE | [13][17] [b] |
25,171 ± 964 cal.yr | 23221 BCE | Te Rere | Kawerau Caldera (Haroharo) | 13 km3 (3.1 cu mi) DRE | [13]33,000 years ago Kawerau (previously called Kaingaroa and miss-assigned to be 200,000 years older)[1] now corrected to 25,171 years ago[17] |
31,500 cal.yr | 29550 BCE | Unit L | Unknown | 8.1 km3 (1.9 cu mi) Tephra | [25][26] |
32,500 cal.yr | 30550 BCE | Omataroa | Unknown | 16.2 km3 (3.9 cu mi) Tephra | [25][26] |
32,800 cal.yr | 30850 BCE | Awakeri | Unknown | 0.77 km3 (0.18 cu mi) Tephra | [25][26] |
33,000 cal.yr | 31050 BCE | Mangaone | Unknown | 19.1 km3 (4.6 cu mi) Tephra | [25][26] |
34,500 cal.yr | 32550 BCE | Unit H | Unknown | 0.1 km3 (0.024 cu mi) Tephra | [25][26] |
35,000 cal.yr | 33050 BCE | Unit G | Unknown | 2.5 km3 (0.60 cu mi) Tephra | [25][26] |
36,100 cal.yr | 34150 BCE | Hauparu | Unknown | 15.2 km3 (3.6 cu mi) Tephra | [25][26] |
36,700 cal.yr | 34750 BCE | Te Mahoe | Unknown | 0.9 km3 (0.22 cu mi) Tephra | [25][26] |
36,800 cal.yr | 34850 BCE | Maketu | Unknown | 11 km3 (2.6 cu mi) Tephra | [25][26] |
38,000 approx. cal.yr | 36050 BCE | Unit C (Pupuwharau then Pongakawa) | Unknown | 0.7 km3 (0.17 cu mi) Tephra | [25][26] |
39,000 approx. cal.yr | 37050 BCE | Ngamotu | Unknown | 4.6 km3 (1.1 cu mi) Tephra | [25][26] |
40,000 approx. cal.yr | 38050 BCE | Unit A | Unknown | 0.44 km3 (0.11 cu mi) Tephra | [25] |
49,000 approx. cal.yr | 47050 BCE | Earthquake Flat | Earthquake Flat | [c][25] | |
about 50,000 cal.yr | 48050 BCE | Rotoiti/Rotoehu tephra | Rotoiti Caldera (Haroharo)' | 130 km3 (31 cu mi) DRE | Basalt was emplaced on the floor of the rhyolitic reservoir.[25] [d][27]: 188–90 [26][28] |
50,000 + cal.yr | 48050 BCE | Matahi Scoria | Suspected to be Rotoiti Caldera | Basaltic immediately pre-Rotoiti[16][25] | |
about 51,000 | 49050 BCE | Puhipuhi Dacite | Puhipuhi Embayment | 48,000+[1] ie is definitely before Rotoiti but age depends on actual Rotoiti age. | |
96,000 approx. cal.yr | 94050 BCE | Moerangi | Moerangi Dome | [25] | |
188,000 approx. cal.yr | 186050 BCE | Tutaeheke/Hap-Kapenga | Tutaeheke Dome | [25] | |
240,000 + cal.yr | 238050 BCE | Pokopoko pyroclastics | Unknown | [25] | |
240,000 + cal.yr | 238050 BCE | Onuku pyroclastics | Unknown | [25] | |
280,000 cal.yr | 278000 BCE | Matahina | Matahina Caldera | 150 km3 (36 cu mi) DRE | Recharging basalt found on top igmibrite layer.[25] [13] The latest age (not literature peer reviewed) is claimed at 322,000 ± 7,000 [29] which appears to be a reversion to the initial uncorrected timing. Also previously timed 230,000.[1] - large as caldera collapse |
280,000 + cal.yr | 280000 BCE | Matawhaura | Matawhaura Dome | [25] | |
280,000 + cal.yr | 280000 BCE | Murupara pyroclastics | Unknown | [25] | |
280,000 + cal.yr | 280000 BCE | Wairua | Wairua Dome | [25] | |
280,000 + cal.yr | 280000 BCE | Maunawhakamana | Maunawhakamana Dome | [25] | |
280,000 + cal.yr | 280000 BCE | Whakapoungakau | Whakapoungakau Dome | Lost volume with Matahini eruption[25] | |
557,000 cal.yr | 555000 BCE | Utu | Utu Caldera | [16] | |
625,000 cal.yr | 623000 BCE | Ōkataina | Ōkataina | [12] |
Tectonics
[edit]Faults are not defined under this very active caldera. The active Paeroa Fault terminates at the caldera edge and the active Ngapouri-Rotomahana Fault is just to the south. The two recently active main vent alignments in the Ōkataina Caldera, the Horahora and Tarawera vents, are parallel with these identifiable faults outside the caldera, although the faults are not on the exact vent line.[1] In the last 9,500 years, four of the seven major ruptures of the Manawahe Fault have been associated in time with a volcanic eruption of the Okataina volcanic centre. This fault is just to the east of Lake Rotoma at the boundary between the tectonic Whakatāne Graben and the magmatic Ōkataina segments of the Taupō Rift. These are the Whakatane eruption of about 5500 years ago, the Mamaku eruption of about 8000 years ago and at least two fault ruptures in before or during the Rotoma eruption of 9500 years ago.[13] Similarly the Ngapouri-Rotomahana Fault and Paeroa Fault have multiple ruptures associated in time with volcanism including immediately prior to the Mamaku and Rotoma rhyolite eruptions in the case of the Paeroa Fault and of the Ngapouri-Rotomahana Fault immediately prior to the Kaharoa eruption.[11] At least 30% of major Taupō Volcanic Zone eruptions have now been associated with significant local fault ruptures within 30 km (19 mi) of the eruption.[13]
Notes
[edit]- ^ Possibly started from
with the author presuming that certain ignimbrites came from this source. The term Haroharo Caldera was increasingly used in academic papers in the 1970's and 1980's but changed as the detailed geology became better understood. The difficulty was that by then the term Haroharo Caldera was established. The term is still used, and currently is defined by gravity and magnetic differences.HaroHaro pile ... are rhyolite lavas of the Okataina Volcanic Centre, extruded on the floor of Haroharo Caldera
— J. Healy, Geology of the Rotoroa District 1962, p54-55 - ^ Sources based on Darragh et al. 2006 give timings about 2000 years earlier for the Okareka eruption.[23]
- ^ This eruption is assigned by some to the Kapenga Caldera. See discussion in that article
- ^ Ages assigned to the Rotoiti/Rotoehu eruptives currently appear to vary depending upon methodology by about 15,000 years in the literature. This is problematic as many ages of volcanics in the Northern North Island would be more definite if a single agreed value existed. The issue of previous inaccurate age assignment started with a new figure for Rotoehu Ash of 64,000 ± 1650 cal.yr.(Wilson et al 1992) which was initially widely accepted. The youngest age assigned is 44,300 years ago (Shane et al 2003). The problems with some older techniques were possibly not resolved with new techniques that could explain the discrepancy and that resulted in 47,400 ± 1500 years ago (Flude et al 2016), while one recent peer reviewed work gave 61,000 ± 1400 cal.yr (Villamor et al 2022). Other, mainly recent chronology studies have a younger date of 45,200 ± 1650 cal.yr. (Danišík et al 2020 and 2012), 45,100 ± 3300 years ago (Peti et al 2020), 47,400 ± 1500 years ago (Gilgour et al 2008), and before these 65,000 years ago (Spinks 2005). A recent review of 27 determinations gave the consensus range as between about 45 and about 55 cal ka (Hopkins et al. 2021). For more on this age issue see notes to Puhipuhi Embayment.
References
[edit]- ^ Jump up to: a b c d e f g h i j k Spinks, Karl D. (2005). Rift Architecture and Caldera Volcanism in the Taupo Volcanic Zone, New Zealand (Thesis).
- ^ Jump up to: a b c d e f g h i j k l m n o Hughes, Ery C.; Law, Sally; Kilgour, Geoff; Blundy, Jon D.; Mader, Heidy M. (2023). "Storage, evolution, and mixing in basaltic eruptions from around the Okataina Volcanic Centre, Taupō Volcanic Zone, Aotearoa New Zealand". Journal of Volcanology and Geothermal Research. 434 (107715): 107715. doi:10.1016/j.jvolgeores.2022.107715. hdl:20.500.11820/9f5c151c-1f2e-47ed-a264-7649eacdf669. ISSN 0377-0273. S2CID 253783414.
- ^ Jump up to: a b Caratori Tontini, F; de Ronde, CEJ; Black, J; Stucker, VK; Walker, SL (2023). "The geology and geophysics of Lake Tarawera, New Zealand: Implications for sublacustrine geothermal activity". Journal of Volcanology and Geothermal Research. 433. doi:10.1016/j.jvolgeores.2022.107731. ISSN 0377-0273.
- ^ Jump up to: a b McKinnon, M., "Okataina caldera and its neighbours," Te Ara - Encyclopedia of New Zealand, 1 May 2015. Retrieved 11 June 2022.
- ^ Jump up to: a b Bannister, Stephen; Bertrand, Edward A.; Heimann, Sebastian; Bourguignon, Sandra; Asher, Cameron; Shanks, Jackson; Harvison, Adrian (2022). "Imaging sub-caldera structure with local seismicity, Okataina Volcanic Centre, Taupo Volcanic Zone, using double-difference seismic tomography". Journal of Volcanology and Geothermal Research. 431 (107653). doi:10.1016/j.jvolgeores.2022.107653. ISSN 0377-0273. S2CID 251914262.
- ^ Hamling, Ian J.; Kilgour, Geoff; Hreinsdóttir, Sigrun; Bertrand, Edward; Bannister, Stephen (2022). "Estimating the distribution of melt beneath the Okataina Caldera, New Zealand: An integrated approach using geodesy, seismology and magnetotellurics". Journal of Volcanology and Geothermal Research. 426 (107549). doi:10.1016/j.jvolgeores.2022.107549. ISSN 0377-0273.
- ^ Jump up to: a b c d e "Okataina Volcanic Centre Geology," GNS science. Retrieved 11 June 2022.
- ^ Bertrand, E.A.; Kannberg, P.; Caldwell, T.G.; Heise, W.; Constable, S.; Scott, B.; Bannister, S.; Kilgour, G.; Bennie, S.L.; Hart, R.; Palmer, N. (2022). "Inferring the magmatic roots of volcano-geothermal systems in the Rotorua Caldera and Okataina Volcanic Centre from magnetotelluric models". Journal of Volcanology and Geothermal Research. 431 (107645): 107645. doi:10.1016/j.jvolgeores.2022.107645. ISSN 0377-0273. S2CID 251526385.
- ^ Rooyakkers, SM; Faure, K.; Chambefort, я.; Баркер, SJ; Elms, HC; Уилсон, CJ; Чарльер, Бл (2023). «Отслеживание взаимодействия магма-коры с высоким временным разрешением: изотопы кислорода в молодых кремнетических магмах вулканической зоны Таупо» . Геохимия, геофизика, геосистемы . 24 (1). doi : 10.1029/2022GC010694 . S2CID 254807245 .
- ^ Бенсон, Томас У.; Иллсли-Кемп, Финниган; Elms, Hannah C.; Хэмлинг, Ян Дж.; Сэвидж, Марта К.; Уилсон, Колин Дж.Н.; Местель, Элеонора Р.Х.; Баркер, Саймон Дж. (2021). «Анализ землетрясения предполагает вторжение дайки в 2019 году около вулкана Тараверы, Новая Зеландия» . Границы в науке Земли . 8 doi : 10.3389/feart.2020.606992 . ISSN 2296-6463 .
- ^ Jump up to: а беременный Берриман, Кельвин; Вильямор, Пилар; Нэрн, Ян; Бегг, Джон; Alloway, Brent V.; Роуленд, Джули; Ли, Джули; Капоте, Рамон (2022). «Вулкано-тектонические взаимодействия на южном краю вулканического центра Окатаина, вулканическая зона Таупо, Новая Зеландия» . Журнал вулканологии и геотермальных исследований . 427 (107552): 107552. DOI : 10.1016/j.jvolgeores.2022.107552 . HDL : 2292/59681 . ISSN 0377-0273 . S2CID 248111450 .
- ^ Jump up to: а беременный в дюймовый Cole, JW, Deer Ing, CD и др . (2014) « Вулканический центр Окатаины, вулканическая зона Таупо, Новая Зеландия: обзор вулканизма и синхронного развития Плутона в активной, доминирующей кремнетической системе кальдеры », Обзоры Земли-науки , 128 , 1–17. Аннотация Получено 11 июня 2022 года.
- ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л м не а Вильямор, Пилар; Литчфилд, Никола Дж.; Гомес-Ортиз, Дэвид; Мартин-Гонсалес, Фидель; Alloway, Brent V.; Берриман, Кельвин Р.; Кларк, Кейт Дж.; Рис, Уильям Ф.; Хауэлл, Эндрю; Анселл, Индия А. (2022). «Разрушения разлома, вызванные большими риолитовыми извержениями на границе между тектоническими и магматическими рифтовыми сегментами: разлом Манавахе, таупо -рифт, Новая Зеландия» . Журнал вулканологии и геотермальных исследований . 427 : 107478. DOI : 10.1016/j.jvolgeores.2022.107478 . HDL : 2292/59828 . ISSN 0377-0273 . S2CID 246258923 .
- ^ Гилгур, GN; Смит, RT (2008). «Стратиграфия, динамика и извержение воздействия двойного магма -извергающего эпизода, вулканический центр Окатаина, Новая Зеландия» (PDF) . Новозеландский журнал геологии и геофизики . 51 (4): 367–378. doi : 10.1080/00288300809509871 . S2CID 128976717 .
- ^ Jump up to: а беременный Смит, Виктория; Шейн, Фил; Нэрн, ИА; Уильямс, Кэтрин (2006-07-01). «Геохимия и магматические свойства эпизодов извержения из зоны линейного вентиляционного отверстия Haroharo, вулканического центра Окатаина, Новая Зеландия в течение последних 10 Kyr» . Бюллетень вулканологии . 69 (1): 57–88. doi : 10.1007/s00445-006-0056-7 . S2CID 129365367 .
- ^ Jump up to: а беременный в Коул, JW; Spinks, KD (2009). «Вулканизм и рифт Кальдеры в вулканической зоне Таупо, Новая Зеландия» . Специальные публикации . 327 (1). Лондон: Геологическое общество: 9–29. Bibcode : 2009gslsp.327 .... 9c . doi : 10.1144/sp327.2 . S2CID 131562598 .
- ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k Лоу, Дэвид; Иланко, Технука. «Предварительно конференция Tephra Data Workshop-Практическая сессия II: Tephra Excursion, Okareka Loop Road (29 января 2023 г.)» . Получено 2023-03-21 .
- ^ Froggatt, PC; Лоу, DJ (1990). «Обзор поздних четвертичных кремнетических и некоторых других образований тефры из Новой Зеландии: их стратиграфия, номенклатура, распределение, объем и возраст» . Новозеландский журнал геологии и геофизики . 33 (1): 89–109. doi : 10.1080/00288306.1990.10427576 . HDL : 10289/176 .
- ^ Beanland, Сара; Берриман, Кельвин Р.; Блик, Грэм Х. (1989). «Геологические исследования землетрясения в Эдгикумбе 1987 года, Новая Зеландия». Новозеландский журнал геологии и геофизики . 32 (1): 73–91. doi : 10.1080/00288306.1989.10421390 . : 83
- ^ Элмс, Ханна Коринн (2022). Геохимия, магматические процессы и временные рамки недавнего риолитового извержения вулканического центра Окатаина, вупаническая зона Таупо, Aotearoa/Новая Зеландия: кандидатская диссертация (тезис). Те Херенга Вака - Виктория Университет Веллингтона. С. 1–316.
- ^ Beanland, S.; Хоутон, Б. (1991). "Rotowaau Tphra: бассальтические вукереры. Отчеты Геологическая служба Новой Зеландии (43): 37–4
- ^ Леонард, GS; Бегг, JG; Уилсон, CJN (2010). Геология района Роторуа. 1: 25000 Геологическая карта 5 . GNS Science, Нижний Хатт, Новая Зеландия. С. 1–102. ISBN 978-0-478-19778-5 Полем Получено 16 марта 2024 года . : 49, 100
- ^ Jump up to: а беременный Дарраг, Майлз; Коул, Джим; Нэрн, Ян; Шейн, Фил (2006). «Пирокластическая стратиграфия и динамика извержения в эпизодах извержения 21,9 ка -а и 17,6 ка -эрвакаату из вулкана Тараверы, вулканического центра Окатаина, Новая Зеландия» . Новозеландский журнал геологии и геофизики . 49 (3): 309–328. doi : 10.1080/00288306.2006.9515170 . S2CID 59137127 .
- ^ Шейн, Фил; Мартин, SB; Смит, Виктория С.; Беггс, К.Р. (2007). «Многочисленные риолитовые магмы и базальтовая инъекция в эпизоде извержения Rerewakaaitu из 17,7 ка -датуату из вулканического комплекса Тараверы, Новой Зеландии» . Журнал вулканологии и геотермальных исследований . 164 (1–2): 1–26. doi : 10.1016/j.jvolgeores.2007.04.003 .
- ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л м не а п Q. ведущий с Т в v В х и Bouvet de Maisonneuve, C.; Forni, F.; Бахманн, О. (2021). «Эволюция магма-водохранилища во время наращивания и восстановления от извержений, образующих кальдера-обобщаемая модель?» Полем Земля-наука обзоров . 218 : 103684. DOI : 10.1016/j.earscirev.2021.103684 . HDL : 10356/161241 . ISSN 0012-8252 . S2CID 236237501 .
- ^ Jump up to: а беременный в дюймовый и фон глин час я Дж k л Данишик, Мартин; Лоу, Дэвид Дж.; Шмитт, Аксель К.; Фридрихс, Бьярн; Хогг, Алан Дж.; Эванс, Норин Дж. (2020). «Рецидив в извержении субмиллениа в кремнической подгруппе мангаоне подгруппы, Новая Зеландия, от байесовского моделирования циркона с двойным давлением и возрастами радиоуглерода» (PDF) . Кватернарные науки обзоры . 246 : 106517. DOI : 10.1016/j.quascirev.2020.106517 . HDL : 10289/13801 . ISSN 0277-3791 . S2CID 224864954 .
- ^ Хопкинс, JL; Лоу, DJ; Horrocks, JL (3 июля 2021 года). «Тефрохронология в Аотеароа, Новая Зеландия» . Новозеландский журнал геологии и геофизики . 64 (2–3): 153–200. doi : 10.1080/00288306.2021.1908368 . HDL : 10289/14349 .
- ^ Пети, Леони; Fitzsimmons, Kathryn E.; Хопкинс, Дженни Л.; Нильссон, Андреас; Фудзиока, Тошиюки; Финк, Дэвид; Мифсуд, Чарльз; Христос, Маркус; Мушлер, Раймунд; Августин, Пол С. (2020). «Разработка мульти-методовой хронологии, охватывающей последний ледниковый интервал с озера Оракей Маар, Окленд, Новая Зеландия» . Геохронология . 2 (2): 367–410. doi : 10.5194/gchron-2-367-2020 . HDL : 20.500.11850/553903 .
- ^ Кидд, Майя Джозефина (2021). Эволюция ландшафта в местности Игнимбрита: исследование плато Мамаку, вупаническая зона Таупо, Тезис Новой Зеландии - Университет Кентерберийского университета (PDF) (тезис).