Jump to content

Донна ДеЭтт Элберт

Донна ДеЭтт Элберт
Рожденный ( 1928-01-27 ) 27 января 1928 г.
Умер 15 января 2019 г. (15 января 2019 г.) (90 лет)
Висконсин

Донна ДеЭтт Элберт (27 января 1928 — 15 января 2019) — американский математик и учёный.

Ранняя жизнь и образование

[ редактировать ]

Родился 27 января 1928 года в Уильямс Бэй , Висконсин. [1] [2] Для Уильяма Лоуренса Элберта и Сью Мелисент Хэтч Донна ДеЭтт Элберт была второй из трех братьев и сестер. Она училась в начальной школе Уильямс-Бэй и средней школе Уильямс-Бэй, которую окончила в 1945 году. [2]

Когда в 1948 году Эльберт согласилась работать на астрофизика Субраманьяна Чандрасекара, у нее не было официального образования в области высшей математики. И только после того, как работодатель Эльберта Чандрасекхар предложил ей записаться на курсы углубленной математики в Университете Висконсин-Мэдисон , она официально получила образование в области высшей математики, такой как исчисление. Несмотря на то, что она уже официально начала изучать математику в колледже, она продолжила обучение и получила степень бакалавра изящных искусств в Школе Чикагского института искусств в 1974 году. [1] [2] Она также получила шестинедельное образование в Школе дизайна Парсонс в Нью-Йорке. [2] летом 1956 года, когда Чандрасекхар работал в Лос-Аламосе . [3]

Научная карьера

[ редактировать ]

В 20 лет, не имея высшего образования, Элберт начал работать «человеком- компьютером ». [4] для Субраманьяна Чандрасекара в обсерватории Йеркса в Висконсине осенью 1948 года. [1] [5] Позже она также работала как в Йерксе, так и в Чикагском университете . [5] [4] [2] [3] Хотя изначально она намеревалась работать под руководством Чандрасекара ровно столько, сколько нужно, чтобы позволить себе поступить в колледж дизайна. [1] она продолжала работать на астрофизика в течение следующих тридцати лет. [1] [2] [3] [5]

Первым крупным вкладом Эльберт в исследования Чандрасекара, который привел к явному узнаванию ее имени, было вычисление решений сложных дифференциальных уравнений для численного и алгебраического решения переменных в связи с теорией турбулентности Гейзенберга. [1] [3] [6] Хотя она не стала соавтором своей математической работы, Чандрасекхар все же выразил ей благодарность в заключительном слове статьи: «В заключение я хочу выразить свою признательность мисс Донне Элберт за ценную помощь в различных числовых интегрированиях, связанных с подготовка этой статьи». [6]

Продолжая оказывать Чандрасекару математическую помощь, он призвал Эльберта, у которого не было предварительного официального образования в области высшей математики, [4] [5] изучать курсы углубленной математики в Университете Висконсина, Мэдисон . [1] [3]

Эльберт стала соавтором 18 статей с Чандрасекаром благодаря ее работам по анализу турбулентности, магнитогидродинамике , [1] поляризация залитого солнцем неба, [7] вращающиеся потоки, конвекция и другие темы по мере того, как она занимала более центральную роль в исследованиях группы Чардрасекара, выходя за рамки своей первоначальной роли компьютера. Несмотря на этот шаг вперед, Элберт по-прежнему проводил большую часть численной работы Чандрасекара, часто создавая решения, которые были еще более упрощены по сравнению с решениями Чандрасекара. [1] Эльберт также является автором собственной статьи «Бессель и родственные функции, которые возникают в гидромагнетике», опубликованной в « Астрофизическом журнале» в 1957 году. [1] [8]

Элберт продолжал проводить исследования вместе с Чандрасекаром до 1979 года. [5]

Диапазон Эльберта

[ редактировать ]

Во время исследования Эльберта с Чандрасекаром книги, позже опубликованной под названием « Гидродинамическая и гидромагнитная стабильность» , [9] Элберт отметил диапазон значений кривых гидродинамической и гидромагнитной предельной устойчивости, которые приводят к локальным минимумам, окруженным экстремальными изменениями. [1] [4] [9] Несмотря на ключевые идеи Эльберта и обширную работу над книгой, Чандрасекхар не предоставил ей соавторства. Вместо этого Чандрасекар поблагодарил Эльберта всего в одной сноске. [1] [9]

Исследователь и ученый Сюзанна Хорн из Университета Ковентри (Великобритания) и научный сотрудник Джонатан Орну из Калифорнийского университета в Лос-Анджелесе (США) теперь опираются на ключевое понимание Элберта о ряде конкретных значений тела на кривых гидродинамической и гидромагнитной предельной устойчивости. [1] [5] [4] [9] которые приводят к необычно сильным магнитным полям в их публикации «Диапазон Эльберта магнитострофической конвекции» I. Линейная теория. [1] Этот конкретный диапазон значений теперь известен как диапазон Эльберта. [5]

Хорн и Арну показывают, что изучение хребта Эльберта может дать решающее представление об исследованиях таких объектов, как звезды и экзопланеты. В случае экзопланет объекты, попадающие в диапазон Эльберта, такие как Земля, имеют достаточно сильные магнитные поля, которые могут отклонять вредное излучение, увеличивая вероятность того, что жизнь, подобная той, которую мы знаем, существует на этой экзопланете. [1] [5] [4]

Очень кратко: хребет Эльберт

[ редактировать ]

Тела, имеющие жидкую и проводящую внутреннюю часть, такие как Земля с ее расплавленным жидким металлическим ядром, могут создавать свои собственные магнитные поля из-за движения заряда внутри их проводящих ядер. Движение жидкости во многом зависит от двух факторов: 1) комбинации скорости вращения и размера тела, которая влияет на силу Кориолиса, действующую на жидкости, и 2) конвекции жидкости, вызванной разницей температур в разных частях жидкости. Для тел, лежащих в хребте Эльберта, сила движения проводящей жидкости, вызванная эффектом Кориолиса и конвекцией, примерно равна, что заставляет жидкость течь более равномерно и упорядоченно. Эта однородность потока позволяет создавать сильные магнитные поля вокруг тела. С другой стороны, большинство тел не лежат в хребте Эльберта, и их проводящие ядра (если они есть) не текут упорядоченно. Несопоставимый вклад потока жидкости, вызванный эффектом Кориолиса и конвекцией, приводит к нарушению структуры потока, что приводит к образованию только слабых магнитных полей. [1] [4] Хорн и Арну расширили работу Эльберта относительно хребта Эльберта с помощью современных вычислительных и аналитических инструментов. [1]

Личная жизнь

[ редактировать ]

Несмотря на долгие часы работы в Чандрасекаре, Элберт и ее семья по-прежнему поддерживали тесную связь с ее общиной в Уильямс-Бей. Она служила казначеем округа Уолворт в течение 15 лет, а ее отец владел местной парикмахерской с 1929 по 1970 Исторического общества год . Революции . [2] В какой-то момент она брала уроки игры на фортепиано у Чандрасекара, но он ушел после того, как их учитель освоил основы слишком быстро, на взгляд Чандрасекара. На каникулах Элберт читала книги, рекомендованные ей начальником, и обсуждала их с ним по возвращении. [3]

Эльберт умер 15 января 2019 года в возрасте 90 лет в медицинском центре Аврора Лейкленд в Висконсине из-за непродолжительной болезни. [2] [5]

  1. ^ Jump up to: а б с д и ж г час я дж к л м н тот п д Хорн, Сюзанна; Орну, Джонатан М. (10 августа 2022 г.). «Эльбертовский диапазон магнитострофической конвекции. I. Линейная теория» . Труды Королевского общества A: Математические, физические и технические науки . 478 (2264). Бибкод : 2022RSPSA.47820313H . дои : 10.1098/rspa.2022.0313 . ISSN   1364-5021 . ПМЦ   9364770 . ПМИД   35966215 .
  2. ^ Jump up to: а б с д и ж г час «Донна ДеЭтт Элберт». Похоронные бюро Нельсона, 2019.
  3. ^ Jump up to: а б с д и ж Чандрасекхар, С. (2010). Научная автобиография: С. Чандрасекхар: с избранной перепиской . Сингапур; Хакенсак, Нью-Джерси: World Scientific. ISBN  978-981-4299-57-2 . OCLC   665139891 .
  4. ^ Jump up to: а б с д и ж г Хейнс, Кори (27 октября 2022 г.). «Наконец-то стала известна работа Донны Элберт о планетарных магнитных полях» . Астрономический журнал . Проверено 16 марта 2024 г.
  5. ^ Jump up to: а б с д и ж г час я Обер, Холли (15 сентября 2022 г.). «Ее работа помогла ее начальнику получить Нобелевскую премию. Теперь все внимание сосредоточено на ней» . Калифорнийский университет в Лос-Анджелесе . Проверено 16 марта 2024 г.
  6. ^ Jump up to: а б Чандрасекхар, С. (22 декабря 1949 г.). «Об элементарной теории турбулентности Гейзенберга» . Труды Лондонского королевского общества. Серия А. Математические и физические науки . 200 (1060): 20–33. Бибкод : 1949РСПСА.200...20С . дои : 10.1098/rspa.1949.0156 . ISSN   0080-4630 .
  7. ^ Чандрасекхар, С.; Элберт, Донна (13 января 1951 г.). «Поляризация солнечного неба» . Природа . 167 (4237): 51–55. Бибкод : 1951Natur.167...51C . дои : 10.1038/167051a0 . ISSN   1476-4687 .
  8. ^ Элберт, Донна Д. (1 августа 1957 г.). «Бессель и родственные функции, встречающиеся в гидромагнетике» . Серия дополнений к астрофизическому журналу . 3 : 77. Бибкод : 1957ApJS....3...77E . дои : 10.1086/190033 . ISSN   0067-0049 .
  9. ^ Jump up to: а б с д Чандрасекар, Субраманян (1961). Гидродинамическая и гидромагнитная устойчивость (изд. Дувра). Издательство Оксфордского университета. ISBN  978-0-486-64071-6 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: e0429b5fe3a6fa31ded802cf8a102a0e__1717126680
URL1:https://arc.ask3.ru/arc/aa/e0/0e/e0429b5fe3a6fa31ded802cf8a102a0e.html
Заголовок, (Title) документа по адресу, URL1:
Donna DeEtte Elbert - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)