Jump to content

Список предшественников металлоорганических химических осаждений из паровой фазы

В химии прекурсор — это соединение, которое участвует в химической реакции и производит другое соединение, или химическое вещество, которое дает начало другому, более значимому химическому продукту. В течение нескольких лет металлоорганические соединения широко используются в качестве молекулярных предшественников в процессе химического осаждения из паровой фазы (MOCVD). Успех этого метода обусловлен главным образом его адаптируемостью и растущим интересом к процессам низкотемпературного осаждения. Соответственно, растущий спрос на различные тонкопленочные материалы для новых промышленных применений также является важной причиной быстрого развития MOCVD. Конечно, широкий спектр материалов, которые не могли быть осаждены с помощью обычного процесса CVD галогенидов, поскольку галогениды не реагируют или не летучи, теперь могут быть выращены с помощью MOCVD. Сюда входят металлы и различные многокомпонентные материалы, такие как полупроводники и интерметаллические соединения, а также карбиды, нитриды, оксиды, бориды, силициды и халькогениды. Другими значительными преимуществами MOCVD перед физическими процессами являются возможность крупномасштабного производства, более простая автоматизация, хорошее конформное покрытие, селективность и способность производить метастабильные материалы. [1]

Таким образом, много усилий было направлено на синтез новых молекулярных предшественников. Продуктивный обзор представлен несколькими исключительными обзорами, охватывающими области MOCVD, такие как, например, эпитаксиальный рост полупроводниковых соединений, [2] [3] [4] и низкотемпературное осаждение металлов. [5] [6] Обзор металлоорганических соединений, используемых для выращивания различных материалов методом MOCVD, представлен в следующих обзорах. [7] [8] [9] Это список известных комплексов-предшественников, синтезированных на данный момент, с подходящими свойствами для использования в процессах MOCVD.

Прекурсор, название, формула Номер КАС. Химическая стабильность Тематическая стабильность Испарение Т (давление) Давление пара (oC/Торр) Разложение Т Олигомеризация Кристаллическая структура Температура плавления дата ТГ ДСК ИК спектры Данные ЯМР Растворимость Ссылки
Li(TMHD), Lithium tetramethylheptanedionate, C11H19LiO2 22441-13-0 Decomposes at low pressure and room temperatures,[1] stable under N2 or Ar in sealed contanier and decomposes slowly in contact with moist air and rapidly in contact with water. Above 215 °C under high vacuum it decomposes to form ketenes and carbanions [1] 268-270 °C (atmospehric pressure) NA 265-268 °C Soluble in water [1] D. Saulys, V. Joshkin, M. Khoudiakov, T.F. Kuech, A.B. Ellis, S.R. Oktyabrsky, L. McCaughan, Journal of Crystal Growth 217 (2000) 287-301
Lithium bis(trimethylsilyl)amide, LiN(SiMe3)2 4039- Reacts violently with water.
70-72 °C J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012).
Lithium bis(ethyldimethylsilyl)amide, [Li(NSiMe2Et)2]2 300585-49-3 122/0.2 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(i-propyldimethylsilyl)amide 137/0.2 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(3,3-dimethylbutyldimethylsilyl)amide 225/0.9 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(i-butyldimethylsilyl)amide 145/0.1 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(n-propyldimethylsilyl)amide 171/0.3 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(n-propyldimethylsilyl)amide 130/0.15 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(i-butyldimethylsilyl)amide 145/0.05 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(triethylsilyl)amide 157/0.095 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(n-butyldimethylsilyl)amide 145/0.085 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium dimethylamide, (CH3)2NLi 3585-33-9 Catches fire spontaneously if exposed to air and in contact with water releases flammable gas. https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-dimethylamide
Dicyclohexylamidolithium, C12H24Li2N 4111-55-1 High sublimation temperature of 250 °C at which it is also partly thermally decomposing. 250 °C Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., & Fjellvåg, H., Journal of Materials Chemistry, 2009, 19(46), 8767
Li(acac), Lithium acetylacetonate, C5H7LiO2 18115-70-3 Hygroscopic Aerosol [1] 250 °C Methanol [1] V. Bornand, Ph. Papet, E. Philippot, Thin Solid Films 1997, 304, 239.
Lithium ethoxide, LiC2H5O 2388-07-0 Self heating and reacts violently with water. Decomposes at 325 °C. LiOEt is insoluble in hydrocarbons, soluble in EtOH (125g/L), α = 6, 4 (MS), ΔHform = -108.6 Powder subliming at 100 °C/vacuo, 150 °C /10-2 torr. https://www.sigmaaldrich.com/catalog/product/aldrich/400203?lang=en
Lithium isopropoxide C3H7LiO 2388-10-5 "Sensitive to moisture and reacts with water. Material decomposes slowly in contact with moist air and rapidly in contact with water, possibly igniting. Avoid contact with moist air, water, acids, alcohols, ketones, esters, carbon dioxide, halogens." Highly flammable, stable under nitrogen or argon in sealed containers
Lithium isopropoxide C3H7LiO
https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-isopropoxide#section=Chemical-and-Physical-Properties
[Li(OtBu)]6, Lithium tert-butoxide, C4H9LiO 1907-33-1 Stable to light, heat, air, carbon dioxide and strong acids. Moisture sentitive, vigorous reaction to water. 108-115 °C [1,2] 283 °C Soluble in toluene, hexane, tetrahydrofuran and methyl tert-butyl ether. "[1] A. Dabirian, Y. Kuzminykh, S. C. Sandu, S. Harada, E. Wagner, P. Brodard, G. Benvenuti, S.Rushworth, P. Muralt, P. Hoffmann, Cryst. Growth Des. 2011, 1, 203.[2] A. Tanaka, K. Miyashita, T. Tashiro, M. Kimura, T. Sukegawa, J. Cryst. Growth 1995, 148, 324.[3] J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012).[4] Sigma-Aldtritch"
LiTa(OEt)6 127503-04-2 The double alkoxides have sufficient stability using parent alcohol as solvent. Decomposes in contact with water. The thermal stability and volatility vary with respect to the reaction in solid or liquid state. 230/0.2 https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2739827.htm
lithium hexa-iso-propoxytantalate LiTa(i-OPr)6 160-180/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
LiTa(t-OBut)6 110-120/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
Lithium niobium ethoxide, LiNb(OC2H5)6 Moisture Sensitive Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
LiNb(i-OPr)6 <140/0.2 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
LiNb(t-OBut)6 110-120/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
Sodium niobium ethoxide, NaNb(OC2H5)6 Moisture Sensitive Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Sodium cyclopentadienide, C5H5Na 4984-82-1 In contact with water releases flammable gases which may ignite spontaneously. Soluble in THF, benzene or liq. NH3 "1. (a) Fischer, E. O.; Jira, R.; Hafner, K. Z. Naturforsch. 1953, 8b,(b) Fischer, E. O.; Hafner, W.; Stahl, H. O. Z. Anorg. Allg. Chem.1955, 282, 47. 2. Fehlhammer, W. P.; Herrmann, W. A.; O¨ fele, K. In Synthetic Methods of Organometallic and Inorganic Chemistry; Herrmann, W.A., Brauer, G., Eds.; Thieme: Stuttgart, 1997; Vol. 3, p 50. 3.https://spectrabase.com/spectrum/IMGzWBmNgJE. 4.https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-cyclopentadienide#section=GHS-Classification"
Sodium hexafluoroacetylacetonate, NaC5HF6O2 22466-49-5 25/10.3
Sodium hexafluoroacetylacetonate, NaC5HF6O2
230 °C Soluble in water and warm methoxypropanol. 1. Zh. Neorg. Khim. 41, 411, (1996). 2. Rec. Trav. Chim. 114, 242, (1995)
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd) 22466-43-9 Sublimes between 170 and 255 °C
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd)
M. Tiitta, M. Leskäla, E. Nykänen, P. Soinen, L. Niinstö, Thermochim. acta, 1995, 256 (1), 47-53
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, Na(thd)(phen) Sublimes around 210 °C D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate 2,2'-bipiridyne, Na(thd)(bipy) It decomposes at 2 stages namely around 90 °C and 140 °C D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium-niobium hexakis(isopropoxide), NaNb(OiPr)6 110-120/0.1
Sodium bis(n-propyldimethylsilyl)amide 213/0.3 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(i-butyldimethylsilyl)amide 189/0.08 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-butyldimethylsilyl)amide 231/0.5 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-hexyldimethylsill)amide 265/0.3 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium Tert Butoxide, NaOC(CH3)3 865-48-5 Stable at room temperature. Decomposes at 300 °C; stable under N2 or Ar in sealed container and decomposes slowly in contact with moist air and violently in contact with water.[1] At 300 °C [1] sublimation: 254 °C [2] (atmospheric pressure) Information not available Information not available 263 °C [3] "• 30 g/L at 20 °C Medium: tert-butyl alcohol • 70 g/L at 20 °C Medium: Toluene • 130 g/L at 20 °C Medium: Hexane • 380 g/L at 20 °C Medium: Tetrahydrofuran • 50 g/L at 20 °C Medium: xylene • 110 g/L at 20 °C Medium: octane • 220 g/L at 20 °C Medium: Diethyl ether • 450 g/L at 20 °C Medium: Dimethylformamide ":[1] https://www.nwmissouri.edu/naturalsciences/sds/s/Sodium%20tert-butoxide.pdf:[2] https://www.albemarle.com/storage/components/T401225.PDF:[3] Simone Manzini, Núria Huguet, Oliver Trapp, Rocco A. Paciello, Thomas Schaub; "Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases" Catalysis Today, Volume 281, Part 2, 2017, Pages 379–386, ISSN 0920-5861
Potassium-niobium hexakis(ethoxide), KNb(OEt)6 200/0.8 Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Potassium tert-butoxide (KOtBu) C4H9KO 865-47-4 Sublimes at temperature of 220 °C at pressure of 1 Torr [1] NA 220/1 256 °C-258 °C [2] Soluble in hexane, toluene, diethyl ether and tetrahydrofuran. [1] Feuer et al.Journal of the American Chemical Society1956vol. 78p. 4364,4367

[2] https://www.sigmaaldrich.com/catalog/product/aldrich/156671?lang=de&region=DE [3] Labbow, R., Michalik, D., Reiß, F., Schulz, A. and Villinger, A., 2016. Isolation of Labile Pseudohalogen NSO Species. Angewandte Chemie International Edition, 55(27), pp. 7680–7684.

Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2 22441-14-1 Hygroscopic
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2
195 °C 1. Onoe, A., Tasaki, Y., & Chikuma, K. (2005). Anomalous evaporation characteristics of vitrificated K(DPM) and stable gas supply using disk-shaped K(DPM) precursors for metalorganic chemical vapor deposition. Journal of Crystal Growth, 277(1-4), 546–554. doi:10.1016/j.jcrysgro.2005.01.077 2. www.molbase.com
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, K(thd)(phen) 320-330 °C Oligomerizes with n up to 7 D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Bi(phenyl)3,Triphenylbismuth(III), (C6H5)3Bi 603-33-8 No specific storage condition 76-80 °C [1] Sigma
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3 14876-47-2
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3
164 °C (Atm) (STREM); 179-185 °C (lit.) (Sigma) [1] Sigma [2] Strem
Ni(hfa)2tmeda Evaporation occurs in the 120–200 _C temperature range, with about 2%residue at 350 _C (Atm under N2)" 120–200 °C (Atm pressure under N2) 106,7°C [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tta)2tmeda evaporated quantitatively in the 200–330 _C range, with less than 2% residue le at 350_°C. (Atm under N2)

2774(2) A˚ 3, Z = 4, Dc = 1.478 g cm−3

147–149°C to request to request [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tmhd)2,Nickel(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionate), Ni(OCC(CH3)3CHCOC(CH3)3)2 14481-08-4 219-223°C (Atm) Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823 [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b.
Ni(acac)2, Nickel(II) acetylacetonate, Ni(C5H7O2)2 3264-82-2 230 - 240°C ethers and aromatic and halogenated hydrocarbons [1] SIGMA [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b.[6] A. Pande, Synlett, 2005, 6, 1042–1043
La(hfa)3diglyme nonhygroscopic, can be handled in air "TGA, 10 ""Clmin under N2) reveal that the sublimation processes takes place in the 115-295°C (residue = 2% to 300°C)" 74-76 °C Ethanol, chloroform, acetone, pentane, toluene and slightly soluble in cyclohexane [7] Graziella Malandrino, Rosalia Licata, Francesco Castelli, Ignazio L. Fragala, and Cristiano Benelli Inorganic Chemistry 1995 34 (25), 6233-6234"
Nb(THD)4, Niobium tetrakis(2,2,6,6-tetramethylheptane-3,5-dionate), C44H76NbO8 41706-15-4 Air and moisture stable, insoluble in water. Under atmospheric pressure and inert atmosphere Li(thd) evaporates completely before ≈270 °C without decomposition. Heating of Nb(thd)4 under similar

conditions results in a solid residue of ≈7% what shows that evaporation and decomposition of this compound goes simultaneously (full decomposition of Nb(thd)4 to Nb2O5 should leave 16.1% residue).[1]

219-220 °C 1,2-dimethoxyethane [1] S. Margueron, A. Bartasyte, V. Plausinaitiene, A. Abrutis, P. Boulet, V. Kubilius, Z. Saltyte, Proc. SPIE 2013, 8626, 862612.
Nb(thd)2Cl3, Bis-dipivaloylmethanate niobium N-chloride, C4H10Cl3NbO2 110615-13-9 Air sensitive. Hydrolyses readily. 170 °C [1] 230 °C [1] S. Jung, N. Imaish, Korean, J. Chem. Eng. 1999, 16, 229.[2] Sigma-Aldritch
Niobium pentakis(methoxide), Nb(OMe)5 Low volatility 200 °C [1] [1] B. J. Curtis, H. R. Brunner, Mater. Res. Bull. 1975, 10, 515.
Nb(OEt)5 , Niobium pentaethoxide, C10H25NbO5 3236-82-6 Air and moisture sensitive. Incompatible with strong acids and strong oxidizing agents. 135-145 °C [1] 100-120 °C [2] 5-6 °C Dry touluene, ethanol. [1] Y. Sakashita, H. Segawa, J. Appl. Phys. 1995, 77, 5995 [2] Y. Akiyama, K. Shitanaka, H. Murakami, Y. S. Shin, M. Yoshida, N. Imaishi, Thin Solid Films

2007, 515, 4975.[3] Sigma-Aldritch

Niobium ethoxide, Nb(OCH2CH3)5 3236-82-6 Stable at room temperature. Stable under N2 or Ar in sealed container and decomposes quickly in contact with moist air. Reacts with water.[1] At 325-350 °C [2] Information not available 21.5 kPa at 500 K [3] At 325-350 °C [2] Dimer At 5 °C [4] Soluble in organic solvents. Decomposes in water.Miscible with organic solvents[4] :[1] https://www.gelest.com/wp-content/uploads/product_msds/AKN590-msds.pdf:[2] Rahtu, Antti (2002). Atomic Layer Deposition of High Permittivity Oxides: Film Growth and In Situ Studies (Thesis). University of Helsinki. ISBN 952-10-0646-3:[3] Niobium(V) ethoxide:[4] Cai Ya-nan, Yang Sheng-hai, Jin Sheng-ming, Yang Hai-ping, Hou Guo-feng, Xia Jiao-yun,"Electrochemical synthesis, characterization and thermal properties of niobium ethoxide"; J. Cent. South Univ. Technol. (2011) 18: 73−77:[5] https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3759592.htm
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5 19824-59-0 Reacts violently with water
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5
100oC https://www.sigmaaldrich.com/catalog/product/aldrich/496863?lang=en
Tantalum(V) ethoxide, Ta(OC2H5)5 6074-84-6 21oC https://www.sigmaaldrich.com/catalog/product/aldrich/760404?lang=en
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3 169896-41-7 Reacts violently with water
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3
https://www.sigmaaldrich.com/catalog/product/aldrich/521280?lang=en
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta 511292-99-2 Reacts violently with water
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta
https://www.sigmaaldrich.com/catalog/product/aldrich/j100043?lang=en
Cesium-yttrium tetrakis (1,1,1-trifluoro -5,5-dimethylhexane-2,4-dionate) C32H40O8F12CsY Vikulova, E. S., Zherikova, K. V., Zelenina, L. N., Trubin, S. V., Sysoev, S. V., Semyannikov, Asanov I. V., Morozova N. B., Igumenov, I. K., J. Chem. Thermodynamics 69 (2014) 137–144
Cesium-yttrium tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate) sublimes at 230 °C A.A. Vorobjev, Course Thesis, http://www.bibliofond.ru/view.aspx?id=555884
Cesium-yttrium tetrakis (hexafluoracetylacetonate) CS[Y(CF3COCHCOCF3)4] M. J. Bennett, F. A. Cotton, P. Legzdins, S. J. Lippard, Inorg. Chem., 1968, 7 (9), pp 1770–1776,
Cesium-lantanum tetrakis (hexafluoracetylacetonate) C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944
Cesium-europium tetrakis (hexafluoracetylacetonate) [i] C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944 [ii] J. H. Burns, M. D. Danford, Inorg. Chem., 1969, 8 (8), pp 1780–1784, doi:10.1021/ic50078a048,
Rubidium acetylacetonate RbC5H7O2 66169-93-5 melting point: 200 °C C.R. Bhattacharjee, M. Bhattacharjee; M.K. Chaudhuri, H. Sangchungnunga, J. Chem. Res. Synopses, 1991, no9, pp. 250–251
Rubidium 2,2,6,6-tetramethylheptane-3,5-dionate C11H19O2Rb 166439-15-2 Rb(thd) was found to be completely insoluble in supercritical CO2 (0 mol/L) under these conditions: 100-200bar/ 60 °C O. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber, E. Dinjus, J. Supercritical Fluids, 2007, Vol.41, Iss.2, p. 179–186
Rubidium trimethysilyloxide sublimes at 80 °C/ 10-6 Torr and decomposes at 140 °C
Rubidium isopropoxide Rb(OiPr) sublimes under deep vacuum (10-6 Torr) despite its polymeric nature, surprisingly it sublimes at higher temperature (200 °C)
Rubidium tert-butoxide Rb(OtBu) sublimable at 185-200 °C/ 10-2 Torr. M.H. Chisholm, S.R. Drake, A.A. Naiini, W.E. Streib, Polyhedron, 1991, Vol. 10, Iss.3, p. 337–345
Dimethyl aluminum acetylacetonate (CH3)2Al(C5H7O2) G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Diethyl aluminum acetylacetonate G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Diisobutyl aluminum acetylacetonate G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Dimethylamine alane NH(CH3)2 · AlH3
Trimethylamine alane AlH3 · N(CH3)3 16842-00-5 /www.sigmaaldrich.com/catalog/product/aldrich/455792
Triethylamine alane Triethylamine alane (TEAA) decomposes on an Al(111) single crystal surface at temperatures above - 310 K Dubois, L. H., Zegarski, B. R., Gross, M. E., & Nuzzo, R. G. 1991, Surface Science, 244(1-2), 89–95.
Dimethylethylamine alane C2H5N(CH3)2 · AlH3 124330-23-0 www.sigmaaldrich.com/catalog/product/aldrich/400386?lang=it&region=IT
Dimethylaluminum hydride (CH3)2AlH 865-37-2 www.americanelements.com/dimethylaluminum-hydride-865-37-2#:~:text=Dimethylaluminum%20Hydride%20is%20one%20of,portable%20sources%20of%20hydrogen%20gas.
Di-iso-butylaluminum hydride [(CH3)2CHCH2]2AlH 1191-15-7 /www.sigmaaldrich.com/catalog/product/aldrich/190306
Calcium bis(cyclopentadienyl) (calcocene) C10H10Ca PubChem CID: 100977887 pubchem.ncbi.nlm.nih.gov/compound/Bis_2_4-cyclopentadienyl_-calcium
Calcium bis(isopropylcyclopentadienyl) [(C3H7)3C5H2]2Ca · (CH3OCH2)2 ereztech.com/product/bistri-isopropylcyclopentadienylcalcium-12-dimethoxyethane-adduct-n-a/
calcium bis[bis(trimethylsilyl)amide C12H36CaN2Si4 ChemSpider ID: 9243563 /www.chemspider.com/Chemical-Structure.9243563.html
calcium bis[bis(trimethylsilyl)amide dimethoxyethane Matthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101
calcium bis[bis(trimethylsilyl)amide tetrahydrofuran Matthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101
Calcium bis(acetylacetonate) Ca(CH3COCHCOCH3)2 19372-44-2 Melting point >280 °C www.americanelements.com/calcium-acetylacetonate-19372-44-2
Calcium bis(hexafluoracetylacetonate) tetraglyme [i] Malandrino, G., Castelli, F., & Fragalà, I. L., Inorganica Chimica Acta, 1994, 224(1-2), 203–207. [ii] D.M. Tsymbarenko et al. / Polyhedron 134 (2017) 246–256
Calcium bis(2,2,6,6-tetramethyl-3,5-heptanedonate) Ca(OCC(CH3)3CHCOC(CH3)3)2 118448-18-3 221-224 °C www.sigmaaldrich.com/catalog/product/aldrich/362956?lang=it&region=IT
Calcium 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dionate monohydrate Simon C. Thompson, David J. Cole-hamilton, Douglas D. Gilliland, Michael L. Hitchman, John C. Barnes, Advanced Materials for Optics and Electronics, Volume 1, Issue 2, pages 81–97, April 1992
Calcium bis(tert-butyl)dimethylketiminate El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Calcium bis(isopropyl)dimethylketiminate El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Chromium (III) 2-ethylhexanoate C24H45CrO6 3444-17-5 www.chemicalbook.com/ChemicalProductProperty_EN_CB5738861.htm
Chromium (III) diethyldithiocarbamate Sedlacek, J., Martins, L. M. D. R. S., Danek, P., Pombeiro, A. J. L., & Cvek, B., Journal of Applied Biomedicine, 2014, 12(4),
Chromium tris(acetylacetonate) Cr(C5H7O2)3 21679-31-2 www.sigmaaldrich.com/catalog/product/aldrich/574082?lang=it&region=IT
Chromium tris(trifluoroacetylacetonate) Cr(C5H4F3O2)3 14592-89-3 /www.sigmaaldrich.com/catalog/product/aldrich/495697?lang=it&region=IT
Chromium tris(hexafluoroacetylacetonate) Cr(CF3COCHCOCF3)3 14592-80-4 www.americanelements.com/chromium-iii-hexafluoroacetylacetonate-14592-80-4
hromium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Cr(OCC(CH3)3CHCOC(CH3)3)3 14434-47-0 www.sigmaaldrich.com/catalog/product/aldrich/468223?lang=it&region=IT
Dysprosium tris(acetylacetonate) Dy(C5H7O2)3• xH2O 18716-76-2 www.americanelements.com/dysprosium-acetylacetonate-18716-76-2#:~:text=Dysprosium%20Acetylacetonate%20is%20one%20of,energy%20and%20water%20treatment%20applications.
Dysprosium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Dy(C11H19O2)3 15522-69-7 www.americanelements.com/tris-2-2-6-6-tetramethyl-3-5-heptanedionato-dysprosium-iii-15522-69-7
Dysprosium tris(6-ethyl-2,2-dimethyl-3,5-decanedionate) Dy(OCC(CH3)3CHCOCF2CF2CF3)3 18323-98-3 www.sigmaaldrich.com/catalog/product/aldrich/237280?lang=it&region=IT
Dysprosium tris(isopropoxide) Dy(OC3H7)3 6742-68-3 www.americanelements.com/dysprosium-iii-isopropoxide-6742-68-3
Dysprosium tris(1-methoxy-2-methyl-2-propanolate) Van Elshocht, S., Lehnen, P., Seitzinger, B., Abrutis, A., Adelmann, C., Brijs, B., ... Heyns, M., Journal of The Electrochemical Society, 153(9), 2006
  1. ^ Jump up to: а б с д и ж г час я дж к л м н тот п д р с т в v В х и Джонс, Энтони С; Хитчман, Майкл Л., ред. (22 декабря 2008 г.). Химическое осаждение из паровой фазы . Издательство РСК. дои : 10.1039/9781847558794 . ISBN  9780854044658 .
  2. ^ Jump up to: а б с д и ж г час я дж к л м Стрингфеллоу, Великобритания (июль 1988 г.). «Безгидридные источники V группы для ОМВПЭ». Журнал электронных материалов . 17 (4): 327–335. Бибкод : 1988JEMat..17..327S . дои : 10.1007/BF02652114 .
  3. ^ Jump up to: а б с д и ж г час я дж Кармальт, CJ; Башарат, С. (2007). «Обзор химического осаждения из паровой фазы» . Комплексная металлоорганическая химия III | НаукаДирект . Том. 12. Эльзевир. стр. 1–34.
  4. ^ Jump up to: а б с д и ж г Мори, Фрэнсис (ноябрь 1991 г.). «Металлоорганические молекулярные прекурсоры для низкотемпературной MOCVD полупроводников III-V». Продвинутые материалы . 3 (11): 542–548. Бибкод : 1991АдМ.....3..542М . дои : 10.1002/adma.19910031104 .
  5. ^ Jump up to: а б Фишер, Роланд А. (2 июня 1995 г.). «Химия CVD металлов. Под редакцией Т. Т. Кодаса и М. Дж. Хэмпден-Смита. VCH Verlagsgesellschaft, Weinheim, 1994. 538 стр., дата рождения: 228.00 DM. - ISBN 3-527-29071-0». Прикладная химия . 107 (11): 1366–1367. Бибкод : 1995AngCh.107.1366F . дои : 10.1002/anie.19951071132 .
  6. ^ Jump up to: а б Вахлас, Константин (февраль 2010 г.). «Химическое осаждение металлов из паровой фазы: от унарных систем к сложным металлическим сплавам». В Эстер Белен-Ферре (ред.). Поверхностные свойства и технология сложных интерметаллидов . Серия книг по сложным металлическим сплавам. Том. 3. С. 49–81. Бибкод : 2010сп.книга.....B . дои : 10.1142/7733 . ISBN  9789814304771 .
  7. ^ Jump up to: а б Деви, Анжана (декабрь 2013 г.). « «Старая химия» для новых приложений: перспективы разработки прекурсоров для приложений MOCVD и ALD». Обзоры координационной химии . 257 (23–24): 3332–3384. дои : 10.1016/j.ccr.2013.07.025 .
  8. ^ Кондорелли, Гульельмо Г.; Маландрино, Грациелла; Фрагала, Игнацио Л. (июль 2007 г.). «Разработка молекулярной архитектуры предшественников β-дикетоната для создания новых современных материалов». Обзоры координационной химии . 251 (13–14): 1931–1950. дои : 10.1016/j.ccr.2007.04.016 .
  9. ^ Маландрино, Грациелла; Фрагала, Игнацио Л. (июнь 2006 г.). «Прекурсоры лантаноидов «второго поколения» для применения MOCVD: влияние ионного радиуса металла и длины полиэфира на координационные сферы и массопереносные свойства». Обзоры координационной химии . 250 (11–12): 1605–1620. дои : 10.1016/j.ccr.2006.03.017 .
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: ec9d3b934a86ede1551402f1f39acdd2__1718100720
URL1:https://arc.ask3.ru/arc/aa/ec/d2/ec9d3b934a86ede1551402f1f39acdd2.html
Заголовок, (Title) документа по адресу, URL1:
List of metal-organic chemical vapour deposition precursors - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)