Машина жидкого состояния
Машина с жидким состоянием ( LSM ) — это тип пластового компьютера , который использует импульсную нейронную сеть . LSM состоит из большого набора единиц (называемых узлами или нейронами ). Каждый узел получает изменяющиеся во времени входные данные от внешних источников ( входы ), а также от других узлов. Узлы случайным образом соединены друг с другом. Рекуррентный пространственно - характер связей превращает изменяющийся во времени входной сигнал в временной паттерн активаций в узлах сети. Пространственно-временные закономерности активации считываются линейными дискриминантными блоками.
Суп из рекуррентно соединенных узлов в конечном итоге приведет к вычислению большого количества нелинейных функций на входе . Учитывая достаточно большое разнообразие таких нелинейных функций, теоретически возможно получить линейные комбинации (с использованием блоков считывания) для выполнения любой математической операции, необходимой для выполнения определенной задачи, например, распознавания речи или компьютерного зрения .
Слово «жидкость» в названии происходит от аналогии с падением камня в неподвижный водоем или другую жидкость. Падающий камень вызовет рябь на жидкости. Входные данные (движение падающего камня) были преобразованы в пространственно-временную картину смещения жидкости (рябь).
LSM были предложены как способ объяснить работу мозга . Утверждается, что LSM являются усовершенствованием теории искусственных нейронных сетей, потому что:
- Схемы не жестко запрограммированы для выполнения конкретной задачи.
- Непрерывные входные данные времени обрабатываются «естественным образом».
- Вычисления в различных временных масштабах могут выполняться с использованием одной и той же сети.
- Одна и та же сеть может выполнять несколько вычислений.
Критика LSM, используемых в вычислительной нейробиологии, заключается в том, что
- LSM на самом деле не объясняют, как функционирует мозг. В лучшем случае они могут воспроизвести некоторые части функциональности мозга.
- Не существует гарантированного способа проанализировать работающую сеть и выяснить, как и какие вычисления выполняются.
- Контроль над процессом очень слабый.
Приближение универсальной функции
[ редактировать ]Если резервуар имеет затухающую память и разделимость входных данных , с помощью считывания можно доказать, что автомат жидкого состояния является универсальным аппроксиматором функций, используя теорему Стоуна-Вейерштрасса . [1]
См. также
[ редактировать ]- Сеть состояний эха : аналогичная концепция в рекуррентной нейронной сети
- Резервные вычисления : концептуальная основа
- Самоорганизующаяся карта
Библиотеки
[ редактировать ]- LiquidC#: реализация топологически устойчивого жидкостного автомата. [2] с нейросетевым детектором [1]
Ссылки
[ редактировать ]- ^ Маасс, Вольфганг; Маркрам, Генри (2004), «О вычислительной мощности рекуррентных цепей импульсных нейронов», Журнал компьютерных и системных наук , 69 (4): 593–616, doi : 10.1016/j.jcss.2004.04.001
- ^ Хананель, Хазан; Ларри, М., Маневит (2012), «Топологические ограничения и устойчивость в машинах с жидким состоянием», Expert Systems with Applications , 39 (2): 1597–1606, doi : 10.1016/j.eswa.2011.06.052 .
{{citation}}
: CS1 maint: несколько имен: список авторов ( ссылка )
- Маасс, Вольфганг; Натшлегер, Томас; Маркрам, Генри (ноябрь 2002 г.), «Вычисления в реальном времени без стабильных состояний: новая структура нейронных вычислений на основе возмущений» (PDF) , Neural Comput , 14 (11): 2531–60, CiteSeerX 10.1.1.183.2874 , doi : 10.1162/089976602760407955 , PMID 12433288 , S2CID 1045112 , заархивировано из оригинала 22 февраля 2012 года.
{{citation}}
: CS1 maint: неподходящий URL ( ссылка ) - Вольфганг Маасс; Томас Натшлегер; Генри Маркрам (2004), «Вычислительные модели для общих кортикальных микросхем» (PDF) , В вычислительной нейронауке: комплексный подход, глава 18 , 18 : 575–605