Jump to content

Conical function

(Redirected from Mehler function)

In mathematics, conical functions or Mehler functions are functions which can be expressed in terms of Legendre functions of the first and second kind, and

The functions were introduced by Gustav Ferdinand Mehler, in 1868, when expanding in series the distance of a point on the axis of a cone to a point located on the surface of the cone. Mehler used the notation to represent these functions. He obtained integral representation and series of functions representations for them. He also established an addition theoremfor the conical functions. Carl Neumann obtained an expansion of the functions in termsof the Legendre polynomials in 1881. Leonhardt introduced for the conical functions the equivalent of the spherical harmonics in 1882.

[edit]
  • Dunster, T. M. (2010), "Conical (or Mehler) Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • G. F. Mehler "Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper" Journal für die reine und angewandte Mathematik 68, 134 (1868).
  • G. F. Mehler "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung" Mathematische Annalen 18 p. 161 (1881).
  • C. Neumann "Ueber die Mehler'schen Kegelfunctionen und deren Anwendung auf elektrostatische Probleme" Mathematische Annalen 18 p. 195 (1881).
  • G. Leonhardt " Integraleigenschaften der adjungirten Kegelfunctionen" Mathematische Annalen 19 p. 578 (1882).
  • Weisstein, Eric W. "Conical function". MathWorld.
  • Milton Abramowitz and Irene Stegun (Eds.) Handbook of Mathematical Functions (Dover, 1972) p. 337
  • A. Gil, J. Segura, N. M. Temme "Computing the conical function $P^{\mu}_{-1/2+i\tau}(x)$" SIAM J. Sci. Comput. 31(3), 1716–1741 (2009).
  • Tiwari, U. N.; Pandey, J. N. The Mehler-Fock transform of distributions. Rocky Mountain J. Math. 10 (1980), no. 2, 401–408.


Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 1b53a0e26d503057dd00c4fab564a36a__1565781540
URL1:https://arc.ask3.ru/arc/aa/1b/6a/1b53a0e26d503057dd00c4fab564a36a.html
Заголовок, (Title) документа по адресу, URL1:
Conical function - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)