Универсальный закон обобщения
Универсальный закон генерализации — это теория познания , утверждающая, что вероятность обобщения реакции на один стимул на другой является функцией «расстояния» между двумя стимулами в психологическом пространстве. Он был представлен в 1987 году Роджером Н. Шепардом. [1] [2] который начал исследовать механизмы обобщения, еще будучи аспирантом Йельского университета:
«Теперь я был убежден, что проблема обобщения является самой фундаментальной проблемой, стоящей перед теорией обучения. Поскольку мы никогда не сталкиваемся с одной и той же ситуацией дважды, ни одна теория обучения не может быть полной без закона, управляющего тем, как то, что изучено в одной ситуации, обобщается на другой" [3]
В статье Шепарда 1987 года приводится «обобщенный» пример птицы, съевшей одного дождевого червя, и представлен дождевой червь, выглядящий несколько иначе. [2] Объясняя концепцию «психологического пространства» в аннотации своей статьи 1987 года, Шепард писал:
«Психологическое пространство устанавливается для любого набора стимулов путем определения метрических расстояний между стимулами, так что вероятность того, что реакция, усвоенная на любой стимул, обобщится на любой другой, является инвариантом [монотонной функцией] расстояния между ними» [2]
Используя экспериментальные данные, полученные как от людей, так и от нечеловеческих субъектов, Шепард выдвинул более конкретную гипотезу, что вероятность обобщения будет падать экспоненциально с расстоянием, измеренным по одному из двух конкретных показателей. Далее его анализ доказывает универсальность этого правила для всех разумных организмов вследствие эволюционной интернализации.
исследования комментарии и Дополнительные
В 1988 году Шепард получил ответ на свое исследование от Дэниела М. Энниса из Исследовательского центра Филип Моррис. [4] Эннис поставил под сомнение актуальность теории Шепарда, поскольку она перекликалась с исследованием, уже проведенным Нософски, чьи исследования представили «несколько исключений». [4] к теории Шепарда. Шепард ответил ему, заявив, что эксперименты Нософски были сосредоточены на «точном расположении отдельных стимулов в «психологическом пространстве»». [4] тогда как его эксперименты были сосредоточены на «расположении, размере и форме области психологического пространства, соответствующей набору стимулов, имеющих те же важные последствия, что и данный тренировочный стимул». [4]
Другие исследователи продолжили исследования Шепарда, предложив свои собственные взгляды на закон обобщения. В 2000 году Кен Ченг из Университета Маккуори. [5] экспериментировал с особым обобщением медоносных пчел, сравнивая свои результаты с более ранними исследованиями на людях и голубях. Ченг объяснил свое понимание закона обобщения Шепарда в этом исследовании следующим образом:
«Предположим, животное находит еду в контейнере в одном месте (S+). Когда животное возвращается, контейнер оказывается в заметно другом месте. Будет ли животное по-прежнему делать ставку на то, что найдет еду в контейнере? В основе этого вопроса лежит предположение, что животное может различать два местоположения. Закон Шепарда не применяется, когда животному трудно различать стимулы. Вопрос в том, имеют ли эти два места одинаковые последствия — в данном случае, есть ли в контейнере еда…» [5]
Ченг измерил реакцию пчелы на копии контейнера в разных местах, при этом оригинал оставался в одном месте и содержал сахарную воду. В контейнерах для копий будет либо обычная водопроводная вода, либо сахарная вода. Измерения градиентов обобщения были разделены как расстоянием, так и направлением в соответствии с законом Шепарда. Ченг обнаружил, что «градиенты обобщения в обеих сериях аппроксимируются экспоненциальными функциями, подтверждающими закон Шепарда». [5] Исследования Ченга показали, что закон Шепарда может быть распространен не только на млекопитающих и птиц, но и на беспозвоночных.В 2001 году Чейтер и Витаньи [6] попытался предоставить «математически более привлекательную форму Всемирного Закона». [6] Они объясняют необходимость иного математического подхода, чем тот, который представлен в статье Шепарда, иллюстрируя пример фотографии и ее негатива:
«Таким образом, хотя положительное и отрицательное одного и того же изображения находятся далеко друг от друга с точки зрения евклидова расстояния, они находятся почти на нулевом расстоянии с точки зрения универсального расстояния, потому что замена черных и белых пикселей преобразует одно изображение в другое» [6]
Чейтер и Витаньи признают, что их подход к закону обобщения может быть слишком абстрактным, чтобы соответствовать психологическому уравнению, но утверждают, что простое абстрактное объяснение было бы столь же подходящим, как и любое другое элементарное объяснение, в практическом смысле, когда они сталкиваются с переплетенными ситуациями. со сложными математическими объяснениями. [6]
Крис Р. Симс [7] попытался предложить другой взгляд на закон обобщения через призму принципа эффективного кодирования. Симс обосновывает теорию искажения скорости посредством экспериментов по перцептивной идентификации. [7]
Стивен А. Франк из Калифорнийского университета в Ирвине [8] предложил другой взгляд на подход закона обобщения. Он утверждает, что экспоненциальная форма универсального закона возникает просто потому, что это единственное математическое преобразование непрерывной шкалы восприятия в вероятность ответа, которая инвариантна к сдвигу и растяжению.
Ссылки [ править ]
- ^ «Что камера вашего мобильного телефона расскажет о вашем мозге» . ScienceDaily.com . 19 сентября 2018 года . Проверено 5 февраля 2019 г.
Канонический закон когнитивной науки — Универсальный закон обобщения, представленный в статье 1987 года, также опубликованной в журнале Science, — говорит нам, что ваш мозг принимает перцептивные решения на основе того, насколько новый стимул похож на предыдущий опыт. В частности, закон гласит, что вероятность того, что вы распространите прошлый опыт на новый стимул, зависит от сходства между двумя событиями, с экспоненциальным спадом вероятности по мере уменьшения сходства. Эта эмпирическая закономерность оказалась верной в сотнях экспериментов на разных видах, включая людей, голубей и даже медоносных пчел.
- ↑ Перейти обратно: Перейти обратно: а б с Шепард, Р. (11 сентября 1987 г.). «К всеобщему закону обобщения для психологической науки» . Наука . 237 (4820): 1317–1323. Бибкод : 1987Sci...237.1317S . дои : 10.1126/science.3629243 . ISSN 0036-8075 . ПМИД 3629243 .
- ^ Шепард, Роджер Н. (февраль 2004 г.). «Как когнитивный психолог начал искать универсальные законы» . Психономический бюллетень и обзор . 11 (1): 1–23. дои : 10.3758/bf03206455 . ISSN 1069-9384 . ПМИД 15116981 .
- ↑ Перейти обратно: Перейти обратно: а б с д Эннис, Д. (11 ноября 1988 г.). «К всеобщему закону обобщения» . Наука . 242 (4880): 944. Бибкод : 1988Sci...242..944E . дои : 10.1126/science.3187534 . ISSN 0036-8075 . ПМИД 3187534 .
- ↑ Перейти обратно: Перейти обратно: а б с Ченг, Кен (сентябрь 2000 г.). «Универсальный закон Шепарда, подтвержденный медоносными пчелами в пространственном обобщении» . Психологическая наука . 11 (5): 403–408. дои : 10.1111/1467-9280.00278 . ISSN 0956-7976 . ПМИД 11228912 . S2CID 25369402 .
- ↑ Перейти обратно: Перейти обратно: а б с д Чейтер, Ник; Витаньи, Пол МБ (июнь 2003 г.). «Обобщенный универсальный закон обобщения» . Журнал математической психологии . 47 (3): 346–369. дои : 10.1016/S0022-2496(03)00013-0 . S2CID 3264904 .
- ↑ Перейти обратно: Перейти обратно: а б Симс, Крис Р. (10 мая 2018 г.). «Эффективное кодирование объясняет универсальный закон обобщения человеческого восприятия» . Наука . 360 (6389): 652–656. Бибкод : 2018Sci...360..652S . дои : 10.1126/science.aaq1118 . ISSN 0036-8075 . ПМИД 29748284 .
- ^ Фрэнк, Стивен А. (9 июня 2018 г.). «Инвариантность измерений объясняет универсальный закон обобщения психологического восприятия» . Труды Национальной академии наук Соединенных Штатов Америки . 115 (39): 9803–9806. Бибкод : 2018PNAS..115.9803F . bioRxiv 10.1101/341305 . дои : 10.1073/pnas.1809787115 . ПМК 6166795 . ПМИД 30201714 .