Ключевые инновации
В эволюционной биологии ключевая инновация , также известная как адаптивный прорыв или ключевая адаптация , представляет собой новый фенотипический признак, который обеспечивает последующее распространение и успех таксономической группы. Обычно они привносят новые способности, которые позволяют таксонам быстро диверсифицироваться и захватывать ниши , которые ранее были недоступны. Это явление помогает объяснить, почему некоторые таксоны гораздо более разнообразны и имеют гораздо больше видов, чем родственные им таксоны .Этот термин был впервые использован в 1949 году Олденом Х. Миллером, который определил его как «ключевые изменения в морфологическом и физиологическом механизме, которые необходимы для возникновения новых основных групп». [1] хотя более широкое современное определение гласит, что «ключевая инновация - это эволюционное изменение индивидуальных черт, которое причинно связано с увеличением степени диверсификации образовавшейся клады». [2]
Теория ключевых инноваций подверглась нападкам, поскольку ее трудно проверить с научной точки зрения, но существуют доказательства, подтверждающие эту идею. [3]
Механизм
[ редактировать ]Механизм, с помощью которого ключевая инновация приводит к таксономическому разнообразию, не определен, но было предложено несколько гипотез: [2]
Повышение индивидуальной физической подготовки
[ редактировать ]Ключевое нововведение может, повышая приспособленность особей вида, привести к тому, что вымирание станет менее вероятным и позволит таксонам расширяться и видообразоваться . [2]
Каналы из латекса и смолы в растениях используются для отпугивания хищников, выделяя при проколе липкий секрет, который может обездвижить насекомых, а некоторые из них содержат токсичные вещества или вещества с неприятным вкусом. Они развивались независимо примерно 40 раз и считаются ключевым нововведением. Повышая устойчивость растений к хищникам, каналы повышают приспособленность видов и позволяют им избежать поедания, по крайней мере, до тех пор, пока хищник не разовьет способность преодолевать защиту. В период устойчивости растения с меньшей вероятностью вымирают и могут диверсифицироваться и видообразоваться, и поэтому таксоны с латексными и смоляными каналами более разнообразны, чем их каналы, лишенные сестринских таксонов. [2]
Новое вторжение в нишу
[ редактировать ]Ключевое нововведение может позволить виду проникнуть в новый регион или нишу и, таким образом, освободиться от конкуренции, что сделает возможным последующее видообразование и распространение .
Классическим примером этого является четвертый бугорок коренных зубов млекопитающих , гипоконус , который позволял ранним предкам млекопитающих эффективно переваривать свою общую диету. Предшественники этого явления — триконодонтные зубы рептилий — были приспособлены для захвата и разрезания, а не жевания.Эволюция гипоконуса и плоских коренных зубов позже позволила животным адаптироваться к травоядной диете, поскольку их можно было использовать для расщепления твердых растительных веществ путем измельчения.Эволюция этой способности привела к тому, что млекопитающие смогли адаптироваться к использованию огромного разнообразия источников пищи. [4] и позволило ранним млекопитающим занять новые ниши посредством эволюции специализированных травоядных животных, которые добились относительного успеха в среднем эоцене . Специализация на растительной диете предлагала ранним травоядным животным достаточные ресурсы для излучения, поскольку энергия не терялась на более высокие трофические уровни, и в то время существовало мало конкурентов. [4]
Репродуктивная изоляция
[ редактировать ]Ключевое нововведение может привести к репродуктивной изоляции, в результате чего особи, обладающие нововведением, больше не размножаются с теми, у кого его нет. Это может привести к быстрому видообразованию, поскольку две популяции разделяются и накапливают мутации.
По этой причине нектарные шпорцы аквилегии , разнообразного рода цветковых растений, считаются ключевым нововведением. Нектар способствует опылению, перемещая нектар дальше от тычинок, гарантируя, что насекомые или птицы -опылители собирают пыльцу при доступе к ней. Это привело к быстрому видообразованию внутри рода, поскольку растения и их опылители могут специализироваться друг на друге, т. е. вид опылителей питается исключительно одним видом растений, и, таким образом, популяции растений могут легко стать репродуктивно изолированными друг от друга. Кроме того, форма и размер нектарной шпоры могут меняться в ответ на адаптацию опылителей, развивая коэволюционные отношения. Род Aquilegia насчитывает более 50 видов. [3]
Критика
[ редактировать ]Как эволюционная теория, ключевые инновации подверглись критическому анализу из-за того, что их трудно проверить. Идентификация зависит от обнаружения корреляции между инновациями и возросшим разнообразием путем сравнения сестринских таксонов, но это не доказывает причинно-следственную связь и не изолирует другие причины разнообразия, такие как стохастичность или среда обитания, и можно «отобрать вишнёвые» примеры, соответствующие гипотезе. [5] Кроме того, ретроспективная идентификация ключевых инноваций мало что дает с точки зрения понимания процессов и давления, которые привели к адаптации, и может идентифицировать очень сложный эволюционный процесс как единое событие. в 1963 году назвал ключевым нововведением Примером этого является эволюция полета птиц, которую Эрнст Майр . [6] Однако в физиологии птичьего предка должны были произойти отдельные эволюционные изменения, включая увеличение мозжечка , увеличение и окостенение грудины а также . Эти адаптации возникли отдельно, с разницей в миллионы лет. [5] не в один шаг.
См. также
[ редактировать ]Ссылки
[ редактировать ]- ^ Миллер, Олден (22 ноября 1949 г.). «Некоторые экологические и морфологические соображения в эволюции высших таксономических категорий». Орнитология как биологическое знание . стр. 84–88.
- ^ Jump up to: а б с д Слышал, СБ; Хаузер, Д.Л. (1995). «Ключевые эволюционные инновации и их экологические механизмы». Историческая биология . 10 (2): 151–173. дои : 10.1080/10292389509380518 .
- ^ Jump up to: а б Ходжес, С.А. Арнольд, ML (1995). «Стимулирование диверсификации растений: являются ли цветочные нектары ключевой инновацией?». Труды: Биологические науки . 262 (1365): 343–348. дои : 10.1098/rspb.1995.0215 . S2CID 86823646 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Jump up to: а б Хантер, Дж. П. Джернвалл, Дж. (1995). «Гипокон как ключевое нововведение в эволюции млекопитающих» . Труды Национальной академии наук . 92 (23): 10718–10722. Бибкод : 1995PNAS...9210718H . дои : 10.1073/pnas.92.23.10718 . ПМК 40683 . ПМИД 7479871 .
{{cite journal}}
: CS1 maint: несколько имен: список авторов ( ссылка ) - ^ Jump up to: а б Кракрафт, Джоэл (1990). «Происхождение эволюционных новых моделей и процессов на разных иерархических уровнях». Эволюционные инновации . стр. 21–46.
- ^ Майр, Эрнст (1963). Виды животных и эволюция . Кембридж: Издательство Гарвардского университета. ISBN 0-674-03750-2 .