CDC Кибер
Было предложено разделить эту статью на новую статью под названием CDC Cyber 200 . ( обсудить ) ( ноябрь 2021 г. ) |
CDC Cyber класса мэйнфреймов (CDC) в 1970-х и 1980 - Суперкомпьютеры были основными продуктами Control Data Corporation х годах. В свое время они были предпочтительной компьютерной архитектурой для научных и математически интенсивных вычислений. Они использовались для моделирования потока жидкости, анализа напряжений в материаловедении, анализа электрохимической обработки, [ 1 ] вероятностный анализ, [ 2 ] энергетика и академические вычисления, [ 3 ] моделирование радиационной защиты, [ 4 ] и другие приложения. В линейку также вошли миникомпьютеры Cyber 18 и Cyber 1000 . Как и их предшественник, CDC 6600 , они необычно использовали двоичное представление , дополняемое единицами .
Модели
[ редактировать ]В линейку Cyber вошли пять различных серий компьютеров:
- Серии 70 и 170 основаны на архитектуре CDC 6600 и CDC 7600 суперкомпьютеров соответственно.
- Серия 200 на базе CDC STAR-100 , выпущенная в 1970-х годах.
- Серия 180, разработанная командой из Канады, выпущенная в 1980-х годах (после серии 200).
- Cyberplus ) или усовершенствованный гибкий процессор (AFP
- Cyber 18 Миникомпьютер на базе CDC 1700.
Некоторые из машин Cyber, ориентированные в первую очередь на крупные офисные приложения, а не на традиционные задачи суперкомпьютеров, тем не менее, включали базовые векторные инструкции для повышения производительности в традиционных ролях CDC.
Кибер 70 и 170 серии
[ редактировать ]Архитектуры Cyber 70 и 170 были преемниками более ранних серий CDC 6600 и CDC 7600 и, следовательно, имели почти все характеристики более ранней архитектуры. Серия Cyber-70 представляет собой незначительное обновление предыдущих систем. Cyber-73 во многом имел то же аппаратное обеспечение, что и CDC 6400, но с добавлением блока сравнения и перемещения (CMU). Инструкции CMU ускорили сравнение и перемещение 6-битных символьных данных, не выровненных по словам. Cyber-73 мог быть оснащен одним или двумя процессорами. Версия с двумя процессорами заменила CDC 6500. Как и в случае с CDC 6200, CDC также предлагала Cyber-72. Cyber-72 имел идентичное аппаратное обеспечение с Cyber-73, но к каждой инструкции добавлялись дополнительные тактовые циклы, чтобы замедлить ее. Это позволило CDC предложить версию с более низкой производительностью по более низкой цене без необходимости разработки нового оборудования. Он также может поставляться с двумя процессорами. Cyber 74 был обновленной версией CDC 6600. [ 5 ] Cyber 76 по сути был переименованным CDC 7600 . Ни у Кибер-74, ни у Кибер-76 не было инструкций CMU.
Серия Cyber-170 представляла собой переход CDC от дискретных электронных компонентов и основной памяти к интегральным схемам и полупроводниковой памяти . В моделях 172, 173 и 174 используются интегральные схемы и полупроводниковая память, тогда как в модели 175 используются высокоскоростные дискретные транзисторы. [ 6 ] Серия Cyber-170/700 представляет собой обновление линейки Cyber-170 конца 1970-х годов.
Центральный процессор (ЦП) и центральная память (ЦП) работали в единицах 60-битных слов . На жаргоне CDC термин «байт» относится к 12-битным объектам (что соответствует размеру слова, используемому периферийными процессорами). Символы имели шесть бит, коды операций — шесть бит, а адреса центральной памяти — 18 бит. Инструкции центрального процессора были 15-битными или 30-битными. 18-битная адресация, присущая серии Cyber 170, налагала ограничение на 262 144 (256 КБ) слов основной памяти, которая является полупроводниковой в этой серии памятью. Центральный процессор не имеет инструкций ввода-вывода, и полагается на периферийные процессоры (PP) для выполнения ввода-вывода.
Система серии Cyber 170 состоит из одного или двух ЦП , работающих на частоте 25 или 40 МГц, и оснащена 10, 14, 17 или 20 периферийными процессорами (PP) и до 24 высокопроизводительными каналами для высокопроизводительных скорость ввода/вывода . Из-за относительно медленного времени обращения к памяти ЦП (в некоторых моделях инструкции обращения к памяти были медленнее, чем операции деления с плавающей запятой), процессоры более высокого класса (например, Cyber-74, Cyber-76, Cyber-175 и Cyber -176) оснащены восемью или двенадцатью словами высокоскоростной памяти, используемой в качестве кэша инструкций. Любой цикл, который помещается в кеш (который обычно называется in-stack ), выполняется очень быстро, не обращаясь к основной памяти для выборки инструкций. Младшие модели не содержат стека команд. Однако, поскольку в каждое 60-битное слово упаковано до четырех инструкций, в конструкции заложена некоторая степень предварительной выборки.
Как и предшествующие системы, серия Cyber 170 имеет восемь 18-битных адресных регистров (от A0 до A7), восемь 18-битных индексных регистров (от B0 до B7) и восемь 60-битных регистров операндов (от X0 до X7). Семь регистров A привязаны к соответствующему им регистру X. Установка от A1 до A5 считывает этот адрес и извлекает его в соответствующий регистр от X1 до X5. Аналогично, регистр установки A6 или A7 записывает соответствующий регистр X6 или X7 в центральную память по адресу, записанному в регистр A. A0 фактически является рабочим регистром.
Процессоры более высокого класса состояли из нескольких функциональных блоков (например, сдвиг, приращение, плавающее сложение), которые позволяли в некоторой степени параллельно выполнять инструкции. Этот параллелизм позволяет программистам на ассемблере минимизировать влияние медленного времени выборки памяти системы за счет предварительной выборки данных из центральной памяти задолго до того, как эти данные потребуются. Путем чередования независимых инструкций между инструкцией выборки из памяти и инструкциями, управляющими выбранным операндом, время, занимаемое выборкой из памяти, может быть использовано для других вычислений. С помощью этого метода в сочетании с ручным созданием тесных циклов, которые вписываются в стек команд, опытный программист кибер-ассемблера может написать чрезвычайно эффективный код, максимально использующий возможности оборудования.
Подсистема периферийного процессора использует метод, известный как «цилиндр и слот», для совместного использования исполнительного блока; каждый ПП имел свою память и регистры, но процессор (слот) сам выполнял поочередно одну инструкцию от каждого ПП (бочонка). Это грубая форма аппаратного мультипрограммирования . Периферийные процессоры имеют 4096 байт 12-битных слов памяти и 18-битный аккумуляторный регистр. Каждый PP имеет доступ ко всем каналам ввода-вывода и всей центральной памяти системы (CM) в дополнение к собственной памяти PP. Набору команд PP не хватает, например, обширных арифметических возможностей и он не запускает пользовательский код; Целью подсистемы периферийного процессора является обработка ввода-вывода и тем самым освобождение более мощного центрального процессора для выполнения пользовательских вычислений.
Особенностью младших процессоров Cyber является блок сравнения перемещения (CMU). Он предоставляет четыре дополнительные инструкции, предназначенные для помощи приложениям обработки текста. В отличие от остальных 15- и 30-битных инструкций, это 60-битные инструкции (три фактически используют все 60 бит, другая использует 30 бит, но для их выравнивания требуется использование 60 бит). Инструкции следующие: переместить короткую строку, переместить длинную строку, сравнить строки и сравнить сопоставленную строку. Они оперируют шестибитными полями (с номерами от 1 до 10) в центральной памяти. Например, одна инструкция может указать «переместить строку из 72 символов, начиная со слова 1000, символ 3, в позицию 2000, символ 9». Аппаратное обеспечение CMU не входит в состав более высокопроизводительных процессоров Cyber, поскольку циклы, закодированные вручную, могут выполняться так же быстро или даже быстрее, чем инструкции CMU.
CDC Более поздние системы обычно используют NOS (сетевую операционную систему) . Версия 1 NOS продолжала обновляться примерно до 1981 года; Версия NOS 2 была выпущена в начале 1982 года, а окончательная версия 2.8.7 PSR 871, выпущенная в декабре 1997 года, по-прежнему содержит незначительные неофициальные исправления ошибок, меры по смягчению последствий Y2K и т. д. в поддержку DtCyber. Помимо NOS, единственной другой операционной системой, обычно используемой в серии 170, была NOS/BE или ее предшественница SCOPE , продукт подразделения CDC в Саннивейле. Эти операционные системы обеспечивают разделение времени пакетных и интерактивных приложений. Предшественником NOS был Kronos , который широко использовался примерно до 1975 года. Из-за сильной зависимости разработанных приложений от набора символов конкретной установки во многих установках предпочиталось запускать старые операционные системы, а не преобразовывать свои приложения. В других установках будут исправлены более новые версии операционной системы, чтобы использовать старый набор символов для обеспечения совместимости приложений.
Кибер 180 серия
[ редактировать ]Разработка Cyber 180 началась в Лаборатории передовых систем, совместном предприятии CDC и NCR, основанном в 1973 году и расположенном в Эскондидо, Калифорния. Семейство машин первоначально называлось Integrated Product Line (IPL) и предназначалось для замены виртуальной памяти линейкам продуктов NCR 6150 и CDC Cyber 70. В документации по разработке система IPL также называлась Cyber 80. Язык автора программного обеспечения (SWL), язык высокого уровня, подобный Паскалю , был разработан для проекта с намерением, чтобы все языки и операционная система (IPLOS) были написаны на SWL. SWL позже был переименован в PASCAL-X и в конечном итоге стал Cybil . Совместное предприятие было закрыто в 1976 году, а CDC продолжил разработку системы и переименовал Cyber 80 в Cyber 180. Первые машины этой серии были анонсированы в 1982 году, а анонс продукта для операционной системы NOS/VE произошел в 1983 году.
Поскольку компьютерный мир стандартизировался до восьмибитного размера байта , клиенты CDC начали настаивать на том, чтобы компьютеры Cyber делали то же самое. Результатом стала новая серия систем, способных работать как в 60-, так и в 64-битном режимах. операционная система 64-битная называлась NOS/VE и поддерживала виртуальной памяти возможности аппаратной . Старые 60-битные операционные системы NOS и NOS/BE могли работать в специальном адресном пространстве для совместимости со старыми системами.
Настоящие 180-режимные машины представляют собой процессоры с микрокодированием, которые могут поддерживать оба набора команд одновременно. Их оборудование полностью отличается от более ранних машин 6000/70/170. Небольшой пакет обмена на 170 режимов был преобразован в гораздо более крупный пакет обмена на 180 режимов; В пакете обмена 180-режимом имеется идентификатор виртуальной машины (VMID), который определяет, выполняется ли 8/16/64-битный набор команд с дополнением до 180 или 12/60-битный набор команд с дополнением до 170.
В первоначальной линейке было три настоящих 180-х под кодовыми названиями P1, P2, P3. P2 и P3 были более крупными моделями с водяным охлаждением. P2 был разработан в Миссиссоге , Онтарио , той же командой, которая позже разработала меньший P1, а P3 был разработан в Арден-Хиллз, Миннесота . P1 представлял собой новый шкаф на 60 плат с воздушным охлаждением, разработанный группой из Миссиссоги; P1 работал на токе частотой 60 Гц (двигатели-генераторы не требовались). Четвертая высококлассная модель 180 990 (под кодовым названием THETA) также находилась в разработке в Арден-Хиллз.
Первоначально 180-е продавались как машины 170/8xx без упоминания о новой 8/64-битной системе внутри. Однако основная программа управления представляет собой программу со 180 режимами, известную как Environmental Interface (EI). Операционная система 170 (NOS) использовала одну большую фиксированную страницу в основной памяти. Было несколько подсказок, которые мог уловить предупрежденный пользователь, например, сообщение «Создание таблиц страниц», которое мигало на консоли оператора при запуске, и панели быстрого запуска с 16 (вместо 12) тумблерами на каждое слово PP на P2 и П3.
Периферийные процессоры в настоящих 180-х всегда представляют собой 16-битные машины со знаковым битом, определяющим, выполняется ли 16/64-битная или 12/60-битная инструкция PP. Инструкции ввода-вывода из одного слова в PP всегда являются 16-битными инструкциями, поэтому при старте PP могут настроить подходящую среду для запуска как EI плюс NOS, так и существующего 170-режимного программного обеспечения клиента. Чтобы скрыть этот процесс от клиента, ранее в 1980-х годах CDC прекратил распространение исходного кода своего пакета Deadstart Diagnostic Sequence (DDS) и превратил его в собственный пакет Common Tests & Initialization (CTI).
Первоначальный состав 170/800 был следующим: 170/825 (P1), 170/835 (P2), 170/855 (P3), 170/865 и 170/875. Первоначально 825 был выпущен после того, как в его микрокод были добавлены некоторые петли задержки; казалось, что дизайнеры в Торонто справились слишком хорошо, и по характеристикам он был слишком близок к P2. Модели 865 и 875 представляли собой модернизированные головки 170/760 (один или два процессора с параллельными функциональными блоками в стиле 6600/7600) с большей памятью. В 865 использовалась обычная память 170; Модель 875 взяла более быструю память основного процессора из линейки Cyber 205 .
Через год или два после первого выпуска CDC объявила своим клиентам об истинных возможностях серии 800, и настоящие модели 180 были переименованы в 180/825 (P1), 180/835 (P2) и 180/855 (P3). ). В какой-то момент была представлена модель 815 с микрокодом с задержкой, а в модели 825 был восстановлен более быстрый микрокод. В конце концов THETA была выпущена как Cyber 990 .
Кибер 200 серия
[ редактировать ]В 1974 году CDC представил архитектуру STAR . STAR — это совершенно новая 64-битная конструкция с виртуальной памятью и инструкциями векторной обработки, добавленными для повышения производительности при выполнении определенного класса математических задач. Векторный конвейер STAR представляет собой канал из памяти в память , который поддерживает длину векторов до 65 536 элементов. Задержки векторного конвейера очень велики, поэтому максимальная скорость достигается только при использовании очень длинных векторов. Скалярный процессор был намеренно упрощен, чтобы освободить место для векторного процессора, и он относительно медленный по сравнению с CDC 7600 . Таким образом, оригинальный STAR оказался большим разочарованием, когда был выпущен (см. Закон Амдала ). По самым оптимистичным оценкам, было поставлено три системы STAR-100.
Оказалось, что все проблемы STAR разрешимы. В конце 1970-х годов CDC решил некоторые из этих проблем с помощью Cyber 203 . Новое имя сохранило свой новый бренд и, возможно, чтобы дистанцироваться от провала STAR. Cyber 203 содержит переработанную скалярную обработку и слабосвязанную конструкцию ввода-вывода. [ а ] но сохраняет векторный конвейер STAR. По самым оптимистичным оценкам, два Cyber 203 были доставлены или модернизированы из STAR-100.
преемник Cyber 203 — Cyber 205 . В 1980 году был анонсирован [ 7 ] Великобритании Метеорологическое бюро в Брэкнелле , Англия, было первым заказчиком, и они получили свой Cyber 205 в 1981 году. Cyber 205 заменяет векторный конвейер STAR модернизированными векторными конвейерами: как скалярные, так и векторные блоки используют ECL микросхемы с вентильной матрицей и охлаждаются фреоном . Системы Cyber 205 были доступны с двумя или четырьмя векторными конвейерами, причем четырехконвейерная версия теоретически обеспечивала 400 64-битных MFLOP и 800 32-битных MFLOP. Такие скорости редко встречаются на практике, за исключением написанного вручную языка ассемблера . ИС матрицы вентилей ECL содержат по 168 логических вентилей каждая. [ 8 ] при этом сети дерева тактовых импульсов настраиваются путем ручной регулировки длины коаксиального кабеля. Набор инструкций среди современных процессоров можно считать V- CISC (очень сложный набор команд). Многие специализированные операции облегчают поиск оборудования, матричную математику и специальные инструкции, позволяющие расшифровывать.
Оригинальный Cyber 205 был переименован в Cyber 205 Series 400 в 1983 году, когда была представлена Cyber 205 Series 600. Серия 600 отличается технологией памяти и корпусом, но в остальном остается той же. Был установлен одинарный четырехтрубный Cyber 205. Все остальные объекты представляют собой двухтрубные установки, окончательный подсчет еще предстоит определить.
Архитектура Cyber 205 превратилась в ETA10 , когда в сентябре 1983 года группа дизайнеров выделилась в ETA Systems. Последней разработкой стал Cyber 250, выпуск которого планировался в 1987 году по цене 20 миллионов долларов; Позже он был переименован в ETA30 после того, как ETA Systems снова была поглощена CDC.
CDC СИБЕР 205
[ редактировать ]- Архитектура: логика ECL/LSI [ 9 ]
- Время цикла 20 нс (или 50 МГц)
- До 800 Мфлопс FP32 и 400 Мфлопс FP64
- 1, 2, 4, 8 или 16 миллионов 64-битных слов со скоростью 25,6 или 51,2 гигабит/сек.
- 8 портов ввода/вывода со скоростью до 16 200 Мбит/с каждый
Cyberplus или усовершенствованный гибкий процессор (AFP)
[ редактировать ]Каждый Cyberplus (также известный как Advanced Flexible Processor, AFP) представляет собой 16-битный процессор с дополнительными возможностями 64-битных операций с плавающей запятой и имеет 256 КБ или 512 КБ слов 64-битной памяти. AFP был преемником Flexible Processor (FP), разработка конструкции которого началась в 1972 году в условиях секретного проекта, нацеленного на обработку данных радаров и фотоизображений. [ 10 ] Блок управления ФП имел аппаратную сеть для условного выполнения микрокоманд , с четырьмя регистрами маски и регистром удержания условия; три бита в формате микрокоманды выбирают среди почти 50 условий для определения выполнения, включая знак результата и переполнение, условия ввода-вывода и управление циклом. [ 11 ]
не менее 21 многопроцессорная В 1986 году работала установка Cyberplus. Эти системы параллельной обработки включают в себя от 1 до 256 процессоров Cyberplus с производительностью 250 MFLOPS каждый, которые подключены к существующей системе Cyber через архитектуру прямого соединения памяти (MIA), это было доступно на NOS. 2.2 для моделей Cyber 170/835, 845, 855 и 180/990.
Физически каждый процессорный блок Cyberplus имел типичный размер модуля мэйнфрейма, аналогичный системам Cyber 180. [ 12 ] точная ширина зависела от того, был ли установлен дополнительный FPU , и весила примерно 1 тонну .
- Программное обеспечение, входившее в комплект поставки Cyberplus, было:
- Системное программное обеспечение
- Кросс-компилятор FORTRAN
- MICA (кросс-ассемблер машинных инструкций)
- Загрузить утилиту создания файлов
- ЭХОС (симулятор)
- Средство отладки
- Утилита дампа
- Утилита анализатора дампов
- Программное обеспечение для обслуживания
Некоторыми сайтами, использующими Cyberplus, были Университет Джорджии и Gesellschaft für Trendanalyses (GfTA) ( Ассоциация анализа тенденций ) в Германии.
Полностью сконфигурированная система Cyberplus с 256 процессорами будет иметь теоретическую производительность 64 гигафлопс и весить около 256 тонн. По общему мнению, система из девяти блоков была способна выполнять сравнительный анализ (включая предварительную обработку сверток) изображений с разрешением 1 мегапиксель со скоростью одна пара изображений в секунду.
Кибер 18
[ редактировать ]Cyber 18 — это 16-битный миникомпьютер, пришедший на смену миникомпьютеру CDC 1700 . В основном он использовался в средах реального времени. Одно примечательное применение лежит в основе 2550 — коммуникационного процессора, используемого в мейнфреймах серии CDC 6000 и Cyber 70/Cyber 170. Модель 2550 была продуктом подразделения коммуникационных систем CDC в Санта-Ана, Калифорния (STAOPS). STAOPS также выпустил еще один коммуникационный процессор (CP), используемый в сетях, размещенных на мэйнфреймах IBM. Этот M1000 CP, позже переименованный в C1000, появился в результате приобретения Marshall MDM Communications. К Cyber 18 был добавлен набор из трех плат для создания 2550.
Cyber 18 обычно программировался на языке Паскаль и ассемблере ; FORTRAN , BASIC и RPG II Также были доступны . Операционные системы включали RTOS (операционная система реального времени), MSOS 5 (операционная система запоминающего устройства) и TIMESHARE 3 ( разделения времени система ).
«Кибер 18-17» было просто новым названием для Системы 17, основанной на процессоре 1784. Другие Cyber 18 (Cyber 18-05, 18-10, 18-20 и 18-30) имели микропрограммируемые процессоры с объемом памяти до 128 КБ, четырьмя дополнительными регистрами общего назначения и расширенным набором команд. Cyber 18-30 имел два процессора. Специальная версия Cyber 18, известная как MP32, которая была 32-битной вместо 16-битной, была создана для Агентства национальной безопасности для работы в области криптоанализа. В микрокод MP32 был встроен пакет математической библиотеки времени выполнения Fortran. Советский Союз пытался купить несколько таких систем, и они уже строились, когда правительство США отменило заказ. Детали MP32 были включены в производство Cyber 18. Одним из применений Cyber 18 был мониторинг Аляскинского трубопровода.
Кибер 1000
[ редактировать ]M1000/C1000, позже переименованный в Cyber 1000, использовался в качестве системы хранения и пересылки сообщений, используемой Федеральной резервной системой. Версия Cyber 1000 со снятым жестким диском использовалась Bell Telephone. Это был RISC-процессор ( компьютер с сокращенным набором команд ). В улучшенную версию, известную как Cyber 1000-2, с подсистемой завершения линии добавлено 256 Zilog Z80 микропроцессоров . Компания Bell Operating Company приобрела большое количество этих систем в середине-конце 1980-х годов для передачи данных. В конце 1980-х годов XN10 был выпущен с улучшенным процессором (добавлена инструкция прямого доступа к памяти), а также с уменьшением размера с двух корпусов до одного. XN20 был улучшенной версией XN10, занимавшей гораздо меньшую площадь. Подсистема терминирования линии была переработана для использования улучшенного микропроцессора Z180 (карта контроллера буфера, плата программируемого линейного контроллера и две карты интерфейса линии связи были объединены в одну карту). XN20 находился на стадии подготовки к производству, когда в 1992 году было закрыто подразделение систем связи.
Джек Ральф был главным архитектором систем Cyber 1000-2, XN-10 и XN-20. Дэн Нэй был главным инженером XN-20.
Кибер 2000
[ редактировать ]Этот раздел нуждается в расширении . Вы можете помочь, добавив к нему . ( июнь 2021 г. ) |
См. также
[ редактировать ]- Серия CDC 6000 — включает несколько предшественников серии Cyber 70.
Пояснительные примечания
[ редактировать ]- ^ По сравнению с тесно связанным вводом-выводом, использовавшимся в предыдущих конструкциях.
Ссылки
[ редактировать ]- ^ «(поиск кибер-терминов)» . Журнал прикладной математики IMA . Издательство Оксфордского университета. Архивировано из оригинала 15 апреля 2013 г. Проверено 1 июля 2008 г.
- ^ Раджани Р. Джоши (9 июня 1998 г.). «Новый эвристический алгоритм вероятностной оптимизации». Компьютеры и исследования операций . 24 (7). Департамент математики и Школа биомедицинской инженерии, Индийский технологический институт Поваи, Бомбей, Индия: 687–697. дои : 10.1016/S0305-0548(96)00056-1 . (требуется подписка)
- ^ Джефф Бауэр (1991). «История суперкомпьютеров в Университете штата Флорида» . Проверено 1 июля 2008 г.
- ^ «Реферат по SAMSY - Модульная система анализа экранирования» . Агентство по ядерной энергии ОЭСР, Исси-ле-Мулино, Франция . Проверено 1 июля 2008 г.
- ^ Музей Ваальсдорпа
- ^ Computerworld , 19 ноября 1975 г., стр. 47.
- ^ Хокни, RW; Джессоуп, ЧР (1988). Параллельные компьютеры 2: Архитектура, программирование и алгоритмы . Филадельфия: Адам Хилгер. стр. 155–185. ISBN 0852748116 .
- ^ Линкольн, Северная Каролина (1982). «Компромиссы технологий и дизайна при создании современного суперкомпьютера». IEEE Транс. Вычислить . С-31 (5): 349–362. дои : 10.1109/TC.1982.1676013 . S2CID 14047755 .
- ^ Донгарра, Джей-Джей; Дафф, Исландия; UKAEA Harwell Lab (Великобритания), отдел компьютерных наук и систем) (1 сентября 1989 г.). Компьютеры усовершенствованной архитектуры (Отчет). дои : 10.2172/5702408 . ОСТИ 5702408 .
- ^ Аллен, Г. (1982). «Реконфигурируемая архитектура массивов микропрограммируемого процессора». Ин Фу, Канзас; Итикава, Тадао (ред.). Специальные компьютерные архитектуры для обработки шаблонов . Бока-Ратон, Флорида: CRC Press. стр. 157–189. ISBN 0849361001 .
- ^ Марк Смотерман (октябрь 2009 г.). «Усовершенствованный гибкий процессор CDC (AFP)» .
- ^ Арендт, Гюнтер. Пост в Usenet "Re: 11! Тема CDC/Cyberplus [1]», 24 декабря 1991 г. комп.sys.super . Группы Google . Проверено 6 февраля 2014 г.
Внешние ссылки
[ редактировать ]- Передняя часть CDC IBM (статья в журнале Network World , 1 декабря 1986 г., стр. 4)
- Кибердокументация на bitsavers.org