Jump to content

Subtle cardinal

(Redirected from Ethereal cardinal)

In mathematics, subtle cardinals and ethereal cardinals are closely related kinds of large cardinal number.

A cardinal is called subtle if for every closed and unbounded and for every sequence of length such that for arbitrary (where is the th element), there exist , belonging to , with , such that .

A cardinal is called ethereal if for every closed and unbounded and for every sequence of length such that and has the same cardinality as for arbitrary , there exist , belonging to , with , such that .[1]

Subtle cardinals were introduced by Jensen & Kunen (1969). Ethereal cardinals were introduced by Ketonen (1974). Any subtle cardinal is ethereal,[1]p. 388 and any strongly inaccessible ethereal cardinal is subtle.[1]p. 391

Characterizations

[edit]

Some equivalent properties to subtlety are known.

Relationship to Vopěnka's Principle

[edit]

Subtle cardinals are equivalent to a weak form of Vopěnka cardinals. Namely, an inaccessible cardinal is subtle if and only if in , any logic has stationarily many weak compactness cardinals.[2]

Vopenka's principle itself may be stated as the existence of a strong compactness cardinal for each logic.

Chains in transitive sets

[edit]

There is a subtle cardinal if and only if every transitive set of cardinality contains and such that is a proper subset of and and .[3]Corollary 2.6 An infinite ordinal is subtle if and only if for every , every transitive set of cardinality includes a chain (under inclusion) of order type .

Extensions

[edit]

A hypersubtle cardinal is a subtle cardinal which has a stationary set of subtle cardinals below it.[4]p.1014

See also

[edit]

References

[edit]
  • Friedman, Harvey (2001), "Subtle Cardinals and Linear Orderings", Annals of Pure and Applied Logic, 107 (1–3): 1–34, doi:10.1016/S0168-0072(00)00019-1
  • Jensen, R. B.; Kunen, K. (1969), Some Combinatorial Properties of L and V, Unpublished manuscript

Citations

[edit]
  1. ^ Jump up to: a b c Ketonen, Jussi (1974), "Some combinatorial principles" (PDF), Transactions of the American Mathematical Society, 188, Transactions of the American Mathematical Society, Vol. 188: 387–394, doi:10.2307/1996785, ISSN 0002-9947, JSTOR 1996785, MR 0332481
  2. ^ W. Boney, S. Dimopoulos, V. Gitman, M. Magidor "Model Theoretic Characterizations of Large Cardinals Revisited"
  3. ^ H. Friedman, "Primitive Independence Results" (2002). Accessed 18 April 2024.
  4. ^ C. Henrion, "Properties of Subtle Cardinals. Journal of Symbolic Logic, vol. 52, no. 4 (1987), pp.1005--1019."
Arc.Ask3.Ru: конец переведенного документа.
Arc.Ask3.Ru
Номер скриншота №: 16e24c09eb10571638392594596d1cb3__1718935920
URL1:https://arc.ask3.ru/arc/aa/16/b3/16e24c09eb10571638392594596d1cb3.html
Заголовок, (Title) документа по адресу, URL1:
Subtle cardinal - Wikipedia
Данный printscreen веб страницы (снимок веб страницы, скриншот веб страницы), визуально-программная копия документа расположенного по адресу URL1 и сохраненная в файл, имеет: квалифицированную, усовершенствованную (подтверждены: метки времени, валидность сертификата), открепленную ЭЦП (приложена к данному файлу), что может быть использовано для подтверждения содержания и факта существования документа в этот момент времени. Права на данный скриншот принадлежат администрации Ask3.ru, использование в качестве доказательства только с письменного разрешения правообладателя скриншота. Администрация Ask3.ru не несет ответственности за информацию размещенную на данном скриншоте. Права на прочие зарегистрированные элементы любого права, изображенные на снимках принадлежат их владельцам. Качество перевода предоставляется как есть. Любые претензии, иски не могут быть предъявлены. Если вы не согласны с любым пунктом перечисленным выше, вы не можете использовать данный сайт и информация размещенную на нем (сайте/странице), немедленно покиньте данный сайт. В случае нарушения любого пункта перечисленного выше, штраф 55! (Пятьдесят пять факториал, Денежную единицу (имеющую самостоятельную стоимость) можете выбрать самостоятельно, выплаичвается товарами в течение 7 дней с момента нарушения.)