Эдуард Вейр

Эдуард Вейр (22 июня 1852 – 23 июля 1903) был чешским математиком, которого сейчас главным образом помнят как первооткрывателя определенной канонической формы квадратных матриц над алгебраически замкнутыми полями. [1] [2] Вейр кратко представил эту форму в статье, опубликованной в 1885 году. [3] Он развил это более подробно в статье, опубликованной в 1890 году. [4] Эта конкретная каноническая форма была названа канонической формой Вейра в статье Шапиро, опубликованной в The American Mathematical Monthly в 1999 году. [5] Ранее эту форму по-разному называли модифицированной жордановой формой , переупорядоченной жордановой формой , второй жордановой формой и H-формой . [6]
Отец Вейра был математиком в средней школе в Праге, и его старший брат Эмиль Вейр также был математиком. Вейр учился в Пражском политехническом институте и Университете Карла-Фердинанда в Праге . Он получил докторскую степень в Геттингенском университете в 1873 году, защитив диссертацию Über алгебраише Raumcurven . [7] После непродолжительного обучения в Париже у Шарля Эрмита и Жозефа Альфреда Серре он вернулся в Прагу, где в конечном итоге стал профессором Университета Шарля-Фердинанда. Вейр также опубликовал исследования в области геометрии , в частности проективной и дифференциальной геометрии . [1] В 1893 году в Чикаго его статья Sur l'équation des lignes geodésiques была прочитана (но не им) на Международном конгрессе математиков, проводившемся в связи со Всемирной Колумбийской выставкой . [8]
Каноническая форма Вейра
[ редактировать ]На изображении показан пример общей матрицы Вейра, состоящей из двух блоков, каждый из которых является базовой матрицей Вейра. Основная матрица Вейра в верхнем левом углу имеет структуру (4,2,1), а другая — структуру (2,2,1,1).

Ссылки
[ редактировать ]- ^ Jump up to: а б Кевин С. Меара; Джон Кларк; Чарльз И. Винсонхалер (2011). Продвинутые темы по линейной алгебре: переплетение матричных задач через форму Вейра . Издательство Оксфордского университета. стр. 94–95.
- ^ О'Коннор, Джон Дж.; Робертсон, Эдмунд Ф. , «Эдуард Вейр» , Архив истории математики MacTutor , Университет Сент-Эндрюс
- ^ Эдвард Вейр (1885 г.). «Матричное распределение по видам и формирование всех видов» (PDF) . Доклады Парижской академии наук . 100 : 966–969 . Проверено 10 декабря 2013 г.
- ^ Эдуард Вейр (1890). «К теории билинейных форм» . Ежемесячные журналы по математике и физике . 1 : 163-236.
- ^ Шапиро, Х. (1999). «Характеристика Вейра». Американский математический ежемесячник . 106 (10): 919–929. дои : 10.2307/2589746 . JSTOR 2589746 . S2CID 56072601 .
- ^ Кевин С. Меара; Джон Кларк; Чарльз И. Винсонхалер (2011). Продвинутые темы по линейной алгебре: переплетение матричных задач через форму Вейра . Издательство Оксфордского университета . стр. 44, 81–82.
- ^ Эдуард Вейр в проекте «Математическая генеалогия»
- ^ « Sur l'équation des lignes geodésiques by M. Edouard Weyr». Математические доклады, прочитанные на Международном математическом конгрессе, проводимом в связи со Всемирной Колумбийской выставкой . Статьи, опубликованные Американским математическим обществом, против Нью-Йорка: Макмиллан как издатель AMS. 1896. стр. 408–411.