Метод моментов (статистика)
Эта статья нуждается в дополнительных цитатах для проверки . ( июнь 2020 г. ) |
В статистике метод моментов является методом оценки популяции параметров . Тот же принцип используется для получения более высоких моментов, таких как асимметрия и эксцесс.
совокупности Он начинается с выражения моментов (т. е. ожидаемых значений степеней рассматриваемой случайной величины ) как функций интересующих параметров. Затем эти выражения приравниваются к моментам выборки. Количество таких уравнений равно количеству оцениваемых параметров. Затем эти уравнения решаются для интересующих параметров. Решения представляют собой оценки этих параметров.
Метод моментов был введен Пафнутием Чебышевым в 1887 году при доказательстве центральной предельной теоремы . Идея сопоставления эмпирических моментов распределения с моментами популяции восходит, по крайней мере, к Пирсону . [1]
Метод [ править ]
Предположим, что параметр = ( ) характеризует распределение случайной величины . [1] Предположим, первый моменты истинного распределения («моменты населения») могут быть выражены как функции с:
Предположим, что выборка размером рисуется, в результате чего получаются значения . Для , позволять
быть j -м моментом выборки, оценкой . Метод оценки моментов для обозначается определяется как решение (если оно существует) уравнений: [2]
Описанный здесь метод для одиночных случайных величин очевидным образом обобщается на несколько случайных величин, что приводит к множеству вариантов выбора моментов, которые будут использоваться. Разные варианты обычно приводят к разным решениям [5], [6].
Преимущества и недостатки [ править ]
Метод моментов довольно прост и дает непротиворечивые оценки (при очень слабых предположениях), хотя эти оценки часто бывают смещенными .
Это альтернатива методу максимального правдоподобия .
Однако в некоторых случаях уравнения правдоподобия могут оказаться неразрешимыми без компьютеров, тогда как оценки методом моментов можно вычислить гораздо быстрее и проще. Благодаря легкости вычислимости оценки метода моментов могут использоваться в качестве первого приближения к решениям уравнений правдоподобия, а затем могут быть найдены последовательные улучшенные приближения с помощью метода Ньютона-Рафсона . Таким образом, метод моментов может помочь в нахождении оценок максимального правдоподобия.
В некоторых случаях, что нечасто при больших выборках, но реже при небольших выборках, оценки, полученные методом моментов, находятся за пределами пространства параметров (как показано в примере ниже); тогда рассчитывать на них не имеет смысла. Эта проблема никогда не возникает в методе максимального правдоподобия. [3] Кроме того, оценки методом моментов не обязательно являются достаточной статистикой , т. е. иногда не учитывают всю значимую информацию в выборке.
При оценке других структурных параметров (например, параметров функции полезности вместо параметров известного распределения вероятностей) соответствующие распределения вероятностей могут быть неизвестны, и оценки на основе моментов могут быть предпочтительнее оценки максимального правдоподобия.
Альтернативный метод моментов [ править ]
Уравнения, которые необходимо решить с помощью метода моментов (MoM), в целом нелинейны, и не существует общеприменимых гарантий существования поддающихся решению решений. [ нужна ссылка ] . Но существует альтернативный подход к использованию моментов выборки для оценки параметров модели данных с точки зрения известной зависимости моментов модели от этих параметров, и этот альтернативный вариант требует решения только линейных уравнений или, в более общем смысле, тензорных уравнений. Эта альтернатива называется байесовским MoM (BL-MoM) и отличается от классического MoM тем, что использует оптимально взвешенные моменты выборки. Учитывая, что MoM обычно мотивируется отсутствием достаточных знаний о модели данных для определения функций правдоподобия и связанных с ними апостериорных вероятностей неизвестных или случайных параметров, странно, что существует тип MoM, который является байесовским . Но особый смысл байесовского подхода приводит к формулировке проблемы, в которой требуемое знание апостериорных вероятностей заменяется необходимым знанием только зависимости моментов модели от неизвестных параметров модели, что и является именно тем знанием, которое требуется традиционным MoM [1]. ],[2],[5]–[9]. BL-MoM также использует знания априорные вероятности оцениваемых параметров, если они доступны, но в остальном используются единые априорные значения. [ нужна ссылка ]
О BL-MoM сообщалось только в литературе по прикладной статистике в связи с оценкой параметров и проверкой гипотез с использованием наблюдений за случайными процессами для задач теории информации и коммуникаций и, в частности, проектирования приемников связи при отсутствии знаний о функциях правдоподобия. или ассоциированные апостериорные вероятности [10] и ссылки там. Кроме того, повторная формулировка этого подхода к проектированию приемников для моделей стохастических процессов в качестве альтернативы классическому MoM для любого типа многомерных данных доступна в виде учебного пособия на веб-сайте университета [11, стр. 11.4]. Приложения в [10] и ссылки демонстрируют некоторые важные характеристики этой альтернативы классическому MoM, а подробный список относительных преимуществ и недостатков приведен в [11, стр. 11.4], но в литературе отсутствуют прямые сравнения в конкретных приложениях MoM. классический МоМ и BL-МоМ. [ нужна ссылка ]
Примеры [ править ]
Примером применения метода моментов является оценка полиномиальных распределений плотности вероятности. В этом случае аппроксимирующий многочлен порядка определяется на интервале . Тогда метод моментов дает систему уравнений, решение которой включает обращение матрицы Ганкеля . [2]
Доказательство центральной предельной теоремы [ править ]
Позволять — независимые случайные величины со средним значением 0 и дисперсией 1, тогда пусть . Мы можем вычислить моменты как
По существу этот аргумент был опубликован Чебышевым в 1887 году. [3]
распределение Равномерное
Рассмотрим равномерное распределение на интервале , . Если тогда у нас есть
Решение этих уравнений дает
Учитывая набор образцов мы можем использовать примеры моментов и в этих формулах, чтобы оценить и .
Однако обратите внимание, что в некоторых случаях этот метод может давать противоречивые результаты. Например, набор образцов результаты в оценке Несмотря на то и поэтому невозможно для множества быть взятым из в этом случае.
См. также [ править ]
Ссылки [ править ]
- ^ Кимико О. Боуман и Л.Р. Шентон, «Оценщик: метод моментов», стр. 2092–2098, Энциклопедия статистических наук , Wiley (1998).
- ^ Дж. Мункхаммар, Л. Мэттссон, Дж. Райден (2017) «Оценка полиномиального распределения вероятностей с использованием метода моментов». PLoS ONE 12(4): e0174573. https://doi.org/10.1371/journal.pone.0174573
- ^ Фишер, Ганс (2011). «4. Вклад Чебышева и Маркова». История центральной предельной теоремы: от классической к современной теории вероятностей . Нью-Йорк: Спрингер. ISBN 978-0-387-87857-7 . ОСЛК 682910965 .
[4] Пирсон, К. (1936), «Метод моментов и метод максимального правдоподобия», Биометрика 28 (1/2), 35–59.
[5] Линдси, Б.Г. и Басак П. (1993). «Многомерные нормальные смеси: быстрый последовательный метод моментов», Журнал Американской статистической ассоциации 88 , 468–476.
[6] Квандт, Р.Э. и Рэмси, Дж.Б. (1978). «Оценка смесей нормального распределения и регрессии переключения», Журнал Американской статистической ассоциации 73 , 730–752.
[7] https://real-statistics.com/distribution-fitting/method-of-moments/
[8] Хансен, Л. (1982). «Свойства обобщенного метода оценок моментов на больших выборках», Econometrica 50 , 1029–1054.
[9] Линдси, Б.Г. (1982). «Условные функции оценки: некоторые результаты оптимальности», Биометрика 69 , 503–512.
[10] Гарднер, В.А., «Разработка классификаторов сигналов ближайшего прототипа», IEEE Transactions on Information Theory 27 (3), 368–372, 1981.