Уравнение состояния Мурнагана
Уравнение состояния Мурнагана представляет собой зависимость между объемом тела и давлением, которому оно подвергается. Это одно из многих уравнений состояния, которые использовались в науках о Земле и физике ударных волн для моделирования поведения материи в условиях высокого давления. Своим названием он обязан Фрэнсису Д. Мурнагану. [1] который предложил это в 1944 году, чтобы отразить поведение материала в как можно более широком диапазоне давлений, чтобы отразить экспериментально установленный факт: чем сильнее сжимается твердое тело, тем труднее его сжимать дальше.
Уравнение Мурнагана при определенных предположениях выводится из уравнений механики сплошной среды . регулируемых параметра: модуль несжимаемости K 0 и его первую производную по давлению K 0 Он включает в себя два , оба измеренные при давлении окружающей среды. эти коэффициенты определяются путем регрессии экспериментально полученных значений объема V в зависимости от давления P. В общем случае Эти экспериментальные данные могут быть получены методом рентгеновской дифракции или ударными испытаниями. Регрессию также можно выполнить на значениях энергии как функции объема, полученных в результате расчетов ab-initio и молекулярной динамики .
Уравнение состояния Мурнагана обычно выражается как: Если уменьшение объема при сжатии невелико, т. е. для V / V 0 больше примерно 90%, уравнение Мурнагана позволяет моделировать экспериментальные данные с удовлетворительной точностью. Более того, в отличие от многих предложенных уравнений состояния, оно дает явное выражение объема как функции давления V ( P ). Но диапазон ее применимости ограничен, а физическая интерпретация неадекватна. Однако это уравнение состояния продолжает широко использоваться в моделях твердых взрывчатых веществ. Из более сложных уравнений состояния наиболее используемым в физике Земли является уравнение состояния Берча-Мурнагана . В ударной физике металлов и сплавов другим широко используемым уравнением состояния является уравнение состояния Ми – Грюнайзена .
Фон
[ редактировать ]Изучение внутреннего строения Земли посредством познания механических свойств составляющих внутренних слоев планеты предполагает экстремальные условия; давление можно исчислить сотнями гигапаскалей , а температуру — тысячами градусов. Изучение свойств материи в этих условиях можно проводить экспериментально с помощью таких устройств, как ячейка с алмазной наковальней для статического давления, или подвергая материал ударным волнам . Это также привело к теоретической работе по определению уравнения состояния, то есть отношений между различными параметрами, определяющими в данном случае состояние материи: объемом (или плотностью), температурой и давлением.
Есть два подхода:
- уравнения состояния, полученные на основе межатомных потенциалов или, возможно, расчетов ab initio;
- выводятся из общих соотношений уравнений состояния механики и термодинамики. Уравнение Мурнагана принадлежит ко второй категории.
Различные авторы предложили десятки уравнений. [2] Это эмпирические зависимости, качество и актуальность которых зависят от их использования и могут оцениваться по разным критериям: количеству задействованных независимых параметров, физическому смыслу, который можно приписать этим параметрам, качеству экспериментальных данных. и последовательность теоретических предположений, лежащих в основе их способности экстраполировать поведение твердых тел при высоком сжатии. [3]
Выражения для уравнения состояния
[ редактировать ]Обычно при постоянной температуре модуль объемного сжатия определяется следующим образом: Самый простой способ получить уравнение состояния, связывающее P и V, — это предположить, что K постоянно, то есть не зависит от давления и деформации твердого тела, тогда мы просто находим закон Гука. В этом случае объем уменьшается экспоненциально с давлением. Это неудовлетворительный результат, поскольку экспериментально установлено, что по мере сжатия твердого тела его становится труднее сжимать. Чтобы пойти дальше, необходимо принять во внимание изменение упругих свойств твердого тела при сжатии.
Предположение Мурнагана состоит в том, чтобы предположить, что модуль объемного сжатия является линейной функцией давления: [1] Уравнение Мурнагана является результатом интегрирования дифференциального уравнения: Мы также можем выразить объем в зависимости от давления:
Однако Пуарье критикует это упрощенное изложение как недостаточно строгое. [4] Эту же зависимость можно показать и иначе, исходя из того, что несжимаемость произведения модуля на коэффициент теплового расширения не зависит от давления для данного материала. [5] Это уравнение состояния также является общим случаем старого политропа. соотношения [6] который также имеет постоянное степенное соотношение.
В некоторых случаях, особенно в связи с расчетами ab initio, будет предпочтительным выражение энергии как функции объема: [7] которое можно получить путем интегрирования приведенного выше уравнения согласно соотношению P = − dE / dV . Его можно записать в K 0 , отличный от 3,
Вывод уравнения состояния Мурнагана: |
---|
Преимущества и ограничения
[ редактировать ]Несмотря на свою простоту, уравнение Мурнагана способно воспроизводить экспериментальные данные для диапазона давлений, который может быть весьма большим, порядка К 0 /2. [8] Оно также остается удовлетворительным, поскольку соотношение V / V 0 остается выше примерно 90%. [9] В этом диапазоне уравнение Мурнагана имеет преимущество по сравнению с другими уравнениями состояния, если кто-то хочет выразить объем как функцию давления. [10]
Тем не менее, другие уравнения могут дать лучшие результаты, и несколько теоретических и экспериментальных исследований показывают, что уравнение Мурнагана неудовлетворительно для многих задач. Таким образом, в той степени, в которой отношение V / V 0 становится очень низким, теория предсказывает, что K 'достигнет 5/3, что является пределом Томаса-Ферми . [10] [11] Однако в уравнении Мурнагана K ′ является постоянным и принимает свое начальное значение. В частности, значение K 0 = 5/3 в некоторых ситуациях становится несовместимым с теорией. Фактически, при экстраполяции поведение, предсказанное уравнением Мурнагана, довольно быстро становится маловероятным. [10]
Независимо от этого теоретического рассуждения, опыт ясно показывает, что К ' уменьшается с давлением, или, другими словами, что вторая производная модуля несжимаемости К ″ строго отрицательна. Теория второго порядка, основанная на том же принципе (см. следующий раздел), может объяснить это наблюдение, но этот подход все еще неудовлетворителен. Действительно, это приводит к отрицательному объемному модулю в пределе, когда давление стремится к бесконечности. Фактически, это неизбежное противоречие, какое бы полиномиальное разложение ни было выбрано, потому что всегда будет доминирующий член, который расходится до бесконечности. [3]
Эти важные ограничения привели к отказу от уравнения Мурнагана, которое В. Хользапфель называет «полезной математической формой, не имеющей никакого физического обоснования». [12] На практике анализ данных сжатия выполняется с использованием более сложных уравнений состояния. Наиболее часто используемым в научном сообществе является уравнение Берча-Мурнагана второго или третьего порядка по качеству собираемых данных. [13]
Наконец, очень общим ограничением этого типа уравнений состояния является их неспособность учитывать фазовые переходы, вызванные давлением и температурой плавления, а также множественные переходы твердое тело-твердое, которые могут вызвать резкие изменения плотности и модуля объемного сжатия. в зависимости от давления. [3]
Примеры
[ редактировать ]практике уравнение Мурнагана используется для выполнения регрессии набора данных, где получают значения коэффициентов K 0 и K 0 На . Полученные коэффициенты и зная соотношение объема к условиям окружающей среды, позволяют нам в принципе рассчитать объем, плотность и модуль объемного сжатия при любом давлении.
Набор данных в основном представляет собой серию измерений объема для различных значений приложенного давления, полученных в основном с помощью дифракции рентгеновских лучей. Также можно работать с теоретическими данными, вычисляя энергию для разных значений объема методами ab initio, а затем регрессируя эти результаты. Это дает теоретическое значение модуля упругости, которое можно сравнить с экспериментальными результатами.
В следующей таблице перечислены некоторые результаты для различных материалов с единственной целью проиллюстрировать некоторые численные анализы, выполненные с использованием уравнения Мурнагана, без ущерба для качества полученных моделей. Учитывая критику физического смысла уравнения Мурнагана, высказанную в предыдущем разделе, к этим результатам следует относиться с осторожностью.
Материал | (ГПа) | |
---|---|---|
НаФ [5] | 46.5 | 5.28 |
NaCl [5] | 24.0 | 5.39 |
НаБр [5] | 19.9 | 5.46 |
НаИ [5] | 15.1 | 5.59 |
MgO [8] | 156 | 4.7 |
Кальцит (CaCO 3 ) [14] | 75.27 | 4.63 |
Магнезит (MgCO 3 ) [15] | 124.73 | 3.08 |
Карбид кремния (3C-SiC) [16] | 248 | 4.0 |
Расширения и обобщения
[ редактировать ]Чтобы улучшить модели или избежать критики, изложенной выше, было предложено несколько обобщений уравнения Мурнагана. Обычно они заключаются в отказе от упрощающего предположения и добавлении еще одного регулируемого параметра. Это может улучшить качество утонченности, но также привести к усложнению выражений. Также поднимается вопрос о физическом смысле этих дополнительных параметров.
Возможная стратегия — включить дополнительный термин P 2 в предыдущей разработке, [17] [18] требуя, чтобы . Решение этого дифференциального уравнения дает уравнение Мурнагана второго порядка: где . Находится естественным путем в уравнении первого порядка, приняв . Разработки на порядок больше 2 возможны в принципе. [19] но за счет добавления настраиваемого параметра для каждого термина.
Можно привести и другие обобщения:
- Кумари и Дасс предложили обобщение, отказывающееся от условия K = 0, но предполагающее, что отчет K / K ' не зависит от давления; [20]
- Кумар предложил обобщение, учитывающее зависимость параметра Андерсона от объема. Впоследствии было показано, что это обобщенное уравнение не было новым, а скорее сводилось к уравнению Тейта . [5] [21]
Примечания и ссылки
[ редактировать ]- ^ Jump up to: а б Ф.Д., Мурнаган (1944), «Сжимаемость сред при экстремальных давлениях», Труды Национальной академии наук Соединенных Штатов Америки , 30 (9): 244–247, Бибкод : 1944PNAS...30..244M , doi : 10.1073/pnas.30.9.244 , PMC 1078704 , PMID 16588651
- ^ Ведепол, П.Т. (1972), «Сравнение простого двухпараметрического уравнения состояния с уравнением Мурнагана», Solid State Communications , 10 (10): 947–951, Бибкод : 1972SSCom..10..947W , doi : 10.1016 /0038-1098(72)90228-1
- ^ Jump up to: а б с Стейси, Флорида; Бреннан, Би Джей; Ирвин, Р.Д. (1981), «Теории конечных деформаций и сравнение с сейсмологическими данными» , Surveys in Geophysicals , 4 (3): 189–232, Бибкод : 1981GeoSu...4..189S , doi : 10.1007/bf01449185 , S2CID 129899060 [ мертвая ссылка ]
- ^ Пуарье (2002), с. 65.
- ^ Jump up to: а б с д и ж Кумар, М. (1995), «Уравнение состояния твердых тел при высоком давлении», Physica B: Condensed Matter , 212 (4): 391–394, Бибкод : 1995PhyB..212..391K , doi : 10.1016/0921-4526 (95)00361-С
- ^ Веппнер, С.П., МакКелви, Дж.П., Тилен, К.Д. и Зелински, А.К., «Переменный индекс политропы, применяемый к моделям планет и материалов», «Ежемесячные уведомления Королевского астрономического общества», Vol. 452, № 2 (сентябрь 2015 г.), страницы 1375–1393, Oxford University Press, также можно найти в arXiv.
- ^ Сильви (1997), с. 122.
- ^ Jump up to: а б Андерсон, О.Л. (1995), Уравнения состояния твердых тел для геофизики и керамики, с. 179 , Издательство Оксфордского университета, ISBN 9780195345278 .
- ^ Энджел, Р.Дж., «Некоторые практические аспекты изучения уравнений состояния и структурных фазовых переходов при высоком давлении», Кристаллография высокого давления , стр. 21–36.
- ^ Jump up to: а б с Хользапфель, ВБ (1996), «Физика твердого тела при сильном сжатии», Reports on Progress in Physics , 59 (1): 29–90, Bibcode : 1996RPPh...59...29H , doi : 10.1088/0034-4885 /59/1/002 , S2CID 250909120
- ^ Теория Томаса-Ферми рассматривает сильно сжатое твердое тело как вырожденный электронный газ ( ферми-газ ) с дополнительным экранирующим членом, учитывающим наличие атомных ядер.
- ^ Хользапфель, ВБ (2001), «Уравнения состояния твердых тел при сильном сжатии», Журнал кристаллографии , 216 (9): 473–488, Бибкод : 2001ZK...216..473H , doi : 10.1524/zkri.216.9. 473.20346 , S2CID 94908666
- ^ Болдырева Е.; Дера, П.; Балларан, Т. Боффа, «Уравнения состояния и их приложения в науках о Земле», в Springer (ред.), Кристаллография высокого давления: от фундаментальных явлений к технологическим приложениям , стр. 135–145.
- ^ Сильви, 1997. п. 123.
- ^ Сильви, 1997.
- ^ Стресснер, К.; Кардона, М.; Чойк, WJ (1987), «Рентгеновские исследования 3C-SiC под высоким давлением», Solid State Communications , 63 (2): 113–114, Бибкод : 1987SSCom..63..113S , doi : 10.1016/0038-1098 (87)91176-8
- ^ Макдональд-младший; Пауэлл, Д.Р. (1971), «Дискриминация между уравнениями состояния», Журнал исследований Национального бюро стандартов, раздел A , 75 (5): 441, doi : 10.6028/jres.075A.035
- ^ Макдональд, 1969, с. 320
- ^ Фучизаки, Казухиро (2006), «Возвращение к уравнению состояния Мурнагана» , Журнал Физического общества Японии , 75 (3): 034601, Бибкод : 2006JPSJ...75c4601F , doi : 10.1143/jpsj.75.034601
- ^ Кумари, М.; Дасс, Н. (1990), «Уравнение состояния, применяемое к хлориду натрия и хлориду цезия при высоких давлениях и высоких температурах», Journal of Physics: Condensed Matter , 2 (14): 3219–3229, Bibcode : 1990JPCM... .2.3219K , doi : 10.1088/0953-8984/2/14/006 , S2CID 250827859
- ^ Шанкер, Дж.; Сингх, Б.; Кушва, С.С. (1997), «Об уравнении состояния твердых тел при высоком давлении», Physica B: Condensed Matter , 229 (3–4): 419–420, Бибкод : 1997PhyB..229..419S , doi : 10.1016 /S0921-4526(96)00528-5
Библиография
[ редактировать ]- Пуарье, JP (2002), Введение в физику недр Земли , Cambridge University Press, ISBN 9780521663922
- Сильви, Б.; д'Арко, П. (1997), Моделирование минералов и силикатных материалов , Kluwer Academic Publishers, ISBN 9780792343332
- Макдональд, младший (1969), «Обзор некоторых экспериментальных и аналитических уравнений состояния», Reviews of Modern Physics , 41 (2): 316–349, Bibcode : 1969RvMP...41..316M , doi : 10.1103/revmodphys. 41,316
См. также
[ редактировать ]Внешние ссылки
[ редактировать ]- EosFit — программа для уточнения экспериментальных данных и расчетных соотношений P(V) для различных уравнений состояния, включая уравнение Мурнагана.